首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The mass spectral properties of glucuronides of the 9- and 10-hydroxylated metabolites of RT-3003 (Vintoperol; (-)-1beta-ethyl-1alpha-hydroxymethyl-1,2,3,4,6,7, 12balpha-octahydroindolo[2,3-a]quinolizine), which were fractionated by high-performance liquid chromatography with fluorescence detection, were investigated using the positive ion electrospray ionization mode. These glucuronides showed predominantly the protonated molecular ion ([M + H](+) ion), and the [M + H](+) ion provided a characteristic product ion spectrum in which abundant ions were obtained at m/z 301, 160 and 142. The first ion, corresponding to the [aglycone + H](+) ion, was produced by neutral loss of the glucuronic acid moiety from the [M + H](+) ion. The product ion spectrum of the [M + H](+) ion of hydroxy-RT-3003 revealed a number of ions common to the glucuronide spectra, suggesting that other two ions observed most likely represent fragmentation of hydroxy-RT-3003. In turn, these glucuronides were positional isomers with respect to the binding site of glucuronic acid. The structures of the isomer pairs were discriminated by the presence of the ion of m/z 318 or 336 in the product ion spectrum. These ions were produced by fission of the C-ring, the same as for the formation of the ions of m/z 160 and 142, as were observed in the product ion spectrum from the [M + H](+) ion of hydroxy-RT-3003. For the formation of these ions, an unusual fragmentation process was proposed, and these ion structures were supported by evidence from the accurate mass measurement data. Additionally, in the sulfates of hydroxylated metabolites, a similar product ion corresponding to the ion of m/z 336 found in the phenolic glucuronides was observed, and was applied for identification of the sulfate metabolites.  相似文献   

2.
Two mass spectrometers, in parallel, were employed simultaneously for analysis of triacylglycerols in canola oil, for analysis of triolein oxidation products, and for analysis of triacylglycerol positional isomers separated using reversed-phase high-performance liquid chromatography. A triple quadrupole mass spectrometer was interfaced via an atmospheric pressure chemical ionization (APCI) interface to two reversed-phase liquid chromatographic columns in series. An ion trap mass spectrometer was coupled to the same two columns using an electrospray ionization (ESI) interface, with ammonium formate added as electrolyte. Electrospray ionization mass spectrometry (ESI-MS) under these conditions produced abundant ammonium adduct ions from triacylglycerols, which were then fragmented to produce MS/MS spectra and then fragmented further to produce MS/MS/MS spectra. ESI-MS/MS of the ammoniated adduct ions gave product ion mass spectra which were similar to mass spectra obtained by APCI-MS. ESI-MS/MS produced diacylglycerol fragment ions, and additional fragmentation (MS/MS/MS) produced [RCO](+) (acylium) ions, [RCOO+58](+) ions, and other related ions which allowed assignment of individual acyl chain identities. APCI-MS of triacylglycerol oxidation products produced spectra like those reported previously using APCI-MS. APCI-MS/MS produced ions related to individual fatty acid chains. ESI-MS of triacylglycerol oxidation products produced abundant ammonium adduct ions, even for those molecules which previously produced little or no intact molecular ions under APCI-MS conditions. Fragmentation (MS/MS) of the [M+NH(4)](+) ions produced results similar to those obtained by APCI-MS. Further fragmentation (MS/MS/MS) of the diacylglycerol fragments of oxidation products provided information on the oxidized individual fatty acyl chains. ESI-MS and APCI-MS were found to be complementary techniques, which together contributed to a better understanding of the identities of the products formed by oxidation of triacylglycerols.  相似文献   

3.
The mass spectrometric (MS) and tandem mass spectrometric (MS/MS) behavior of six nitrocatechol-type glucuronides using atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) was systematically studied, and the effect of operation parameters on the fragmentations are presented. The positive ion APCI- and ESI-MS spectra showed an intense protonated molecule and the respective negative ion spectra a deprotonated molecule with minimal fragmentation. The main fragment ions in the MS/MS spectra of the protonated and deprotonated molecules were [M + H - Glu]+ and [M - H - Glu]-, respectively, formed by the loss of the glucuronide moiety. The measured limits of detection indicated that ESI is a significantly more efficient ionization method than APCI in the negative and positive ion modes for the compounds studied. MS/MS was found to be less sensitive, but more reliable and simple than MS due to the absence of chemical noise.  相似文献   

4.
The fragmentation behavior of (+)-silybin (1) and (+)-deuterosilybin (2), as well as of their flavanone-3-ol-type building blocks, such as 3,5,7-trihydroxy-2-phenyl-4-chromanone (3) and 2-(1,4-benzodioxolanyl)-3,5,7-trihydroxy-4-chromanone (4), were investigated by atmospheric pressure chemical ionization quadropole time-of-flight tandem mass spectrometry in the positive ion mode (APCI(+)-QqTOF MS/MS). The product ion spectra of the protonated molecules of 1 revealed a rather complicated fragmentation pattern with product ions originating from consecutive and competitive loss of small molecules such as H2O, CO, CH2O, CH3OH and 2-methoxyphenol, along with the A+- and B+-type ions arising from the cleavage of the C-ring of the flavanone-3-ol moiety. The elucidation of the fragmentation behavior of 1 was facilitated by acquiring information on the fragmentation characteristics of the flavanone-3-ol moieties and 2. The capability of the accurate mass measurement on the quadrupole time-of-flight mass spectrometer allowed us to determine the elemental composition of each major product ion. Second-generation product ion spectra obtained by combination of in-source collision induced dissociation (CID) with selective CID (pseudo-MS(3)) was also helpful in elaborating the fragmentation pathways and mechanism. Based on the experimental results, a fragmentation mechanism as well as fragmentation pathways for 1 and its flavanone-3-ol building blocks (3, 4) are proposed and discussed.  相似文献   

5.
A series acetals/ketals of aldehydes and ketones formed by the reaction of two photolabile protecting groups, bis(2-nitrophenyl) ethanediol and bis(4,5-dimethoxy-2-nitrophenyl) ethanediol (I and II, respectively), were analysed under EI, LSIMS, ESI and APCI conditions to obtain molecular weights as well as structural information. The EI and LSIMS techniques failed to give molecular weight information. The positive ESI yielded [M + H](+) ions only for I; however, with added Na(+) both I and II formed [M + Na](+) adducts. But upon decomposition, the [M + Na](+) ions yielded Na(+) ion as the only product ion. Similarly, under negative ion ESI conditions both I and II gave molecular weight information by forming adduct ions with halide anions (F(-), Cl(-), Br(-) and I(-)); however, they did not give structural information as they resulted in only the halide anion as the abundant fragment ion upon dissociation. All the compounds formed abundant M(-*) ions under negative ion APCI conditions, and their MS/MS spectra showed characteristic fragment ions; hence the acetals/ketals of I and II could be successfully characterized under negative ion APCI conditions.  相似文献   

6.
For detection and differentiation of two types of triterpenoid saponins based on different aglycons of the lupane and oleanane skeleton from the roots of Pulsatilla chinensis (Bunge) Regel, the silver ion was introduced and electrospray ionization multi-stage tandem mass spectrometry was applied to analyze eleven triterpenoid saponin silver complexes. The quasi-molecular ion [M+Ag](+) was observed in the full-scan MS spectra of all the silver complexes. The MS(2) data of the [M+Ag](+) ion provided structural information on the sugar sequence of the oligosaccharide chains and the aglycon of the saponins. There are two patterns in the cleavage pathway of oleanane-type saponins. One is elimination of the sugar chain and subsequent loss of the carboxylic group which is the same as the cleavage of lupine-type saponins. The other is loss of the distinguishing ions at m/z 72 and 28 (C(2)H(4)) followed by loss of the carboxylic group. Diagnostic fragmentation pathways of the silver complexes of the saponins allow successful identification of the two types of saponins from the roots of Pulsatilla chinensis (Bunge) Regel.  相似文献   

7.
Mass spectrometry of ochratoxin A (OTA) and B (OTB) under electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) was studied. ESI offers higher sensitivities and less fragmentation than APCI. A sensitive LC/MS/MS method for the determination of ochratoxin A (OTA) in human plasma samples was developed. The absolute minimum detection limit was around 10-20 pg per injection, corresponding to 0.5 ppb in an injection equivalent to 20-40microg of human plasma. Ochratoxin B (OTB) was used as an internal standard and its absence in real-life samples was carefully checked before samples were spiked with the internal standard. It was found that these two ochratoxins are susceptible to sodium adduct formation. Fragment ions from the [M + H](+) and [M + Na](+) ions of both OTA and OTB were monitored in the multiple reaction monitoring mode. Three quantitative approaches, standard addition method, internal standard method (using ochratoxin B as an internal standard) and external standard method, were compared in the analysis of human blood plasma. Results from the mass spectrometric method were comparable to those from a conventional LC/fluorescence method. The LC/MS/MS method was also applied to the analysis of contaminated coffee samples.  相似文献   

8.
The fragmentation of [M+Na](+) ions produced from steroid 11beta-nitrates during electrospray/ionization (ESI) was studied by using ion trap MS/MS technique. The [M+Na](+) ions eliminate NO(2) and HNO(3) for epimers bearing 9beta and 9alpha substituents, respectively. As the main fragmentation pathways are determined mainly by the configuration at C-9 and alternative fragmentation does not practically occur, this offers the possibility for the determination of the configuration at chiral C-9 centre in the estrane 11beta-nitrate series by ESI mass spectrometry.  相似文献   

9.
Fragmentation mechanisms of phytoalexin analogs, including brassitin and brassinin and their glucosylated analogs, have been studied by electrospray (ESI) ion trap (IT) multistage (MS(n), n = 1-4) mass spectrometry, matrix-assisted laser desorption/ionization time-of-flight (MALDI ToF/ToF) and ESI-Q/ToF tandem mass spectrometry techniques. At the fragmentation of sodium adducts a hitherto not described process has been elucidated The proposed mechanism of this process includes cyclization of the brassitin and brassinin cationized adducts through a six-membered cycle of the molecules and the elimination of isocyanate or isothiocyanate from the thio- or dithiocarbamate moiety, giving rise to [M + Na - 43](+) or [M + Na - 59](+) adducts. The elimination of NH=C=O or NH=C=S molecules has been confirmed by the high resolution measurement of the elemental composition of the ions produced and quantum-chemical calculations of the six-membered transition state. Other fragmentation routes include cleavage of an alkane linker, while numerous characteristic hexopyranose pathways are taking place in the glucosylated compounds. The presented theoretical data on the ESI and MALDI behavior of the saccharidic, as well as of the indole aglycon parts, can facilitate structural elucidation of the analogous compounds.  相似文献   

10.
The fragmentation behavior of taxoids was studied using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) sources with multi-stage tandem mass spectrometry. In the positive ion mode taxoids gave prominent [M+Na]+ and [M+K]+ ions with the ESI source, and [M+NH4]+ or [M+H]+ ions with the APCI source. The MS/MS fragmentations of ions produced by APCI and ESI sources were very similar. For both sources, the presence of cinnamoyl or benzoyl groups could be characterized by initial losses of 148 or 122 u, respectively, from molecular adduct ions. However, the elimination of cinnamic acid was relatively difficult for the molecular adduct ions formed by APCI, and was comparable in importance to the loss of acetic acid. The other fragments involved losses of CH2CO, CO, and H2O. The 5/7/6 type taxoids underwent characteristic losses of 58 or 118 u from ions produced by both APCI and ESI sources. The fragmentation behavior was remarkably influenced by substitution locations. The elimination of the C-10 benzoyl group was usually the first fragmentation step, while that of the C-2 benzoyl group was relatively difficult. The acetoxyl group at C-7 was more active than those at C-2, C-9, and C-10, which in turn were more active than that at C-4. These fragmentation rules could facilitate the rapid screening and structural characterization of taxoids in plant extracts by high-performance liquid chromatography/mass spectrometry (HPLC/MS).  相似文献   

11.
Triclosan is a widely used broad‐spectrum antibacterial agent that acts by specifically inhibiting enoyl–acyl carrier protein reductase. An in vitro metabolic study of triclosan was performed by using Sprague‐Dawley (SD) rat liver S9 and microsome, while the in vivo metabolism was investigated on SD rats. Twelve metabolites were identified by using in‐source fragmentation from high‐performance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometry (HPLC/APCI‐ITMS) analysis. Compared to electrospray ionization mass spectrometry (ESI‐MS) and tandem mass spectrometry (MS/MS) that gave little fragmentation for triclosan and its metabolites, the in‐source fragmentation under APCI provided intensive fragmentations for the structural identifications. The in vitro metabolic rate of triclosan was quantitatively determined by using HPLC/ESI‐ITMS with the monitoring of the selected triclosan molecular ion. The metabolism results indicated that glucuronidation and sulfonation were the major pathways of phase II metabolism and the hydroxylated products were the major phase I metabolites. Moreover, glucose, mercapturic acid and cysteine conjugates of triclosan were also observed in the urine samples of rats orally administrated with triclosan. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Purines and pyrimidines are of interest owing to their significance in processes in living organisms. Mass spectrometry is a promising analytical tool utilized in their analysis. Two atmospheric pressure ionization (API) methods (electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI)) in both negative and positive modes applied to selected purine and pyrimidine metabolites (markers of inherited metabolic disorders) were studied. APCI is less sensitive to alkali metal cations present in a sample and offers higher response than ESI for studied compounds. Both of the techniques afford quasi-molecular ions, but fragmentation also occurs to a certain extent. However, the application of collision-induced dissociation of quasi-molecular ions is essential to confirm a certain metabolite in a sample. Fragmentation of both positive and negative ions was evaluated using multi-stage mass spectrometric experiments. Typical neutral losses correspond to molecules NH(3), H(2)O, HCN, CO, H(2)NCN, HNCO and CO(2). The ion [NCO](-) arises in the negative mode. The cleavage of the glycosidic C-N bond is characteristic for relevant metabolites. Other neutral losses (CH(2)O, C(2)H(4)O(2) and C(3)H(6)O(3)) originate from fragmentation of the glycosidic part of the molecules. In addition to fragmentation, the formation of adducts of some ions with applied solvents (H(2)O, CH(3)OH) was observed. The composition of the solution infused into the ion source affects the appearance of the mass spectra. Tandem mass spectra allow one to distinguish compounds with the same molecular mass (uridine-pseudouridine and adenosine-2'-deoxyguanosine). Flow injection analysis APCI-MS/MS was tested on model samples of human urines corresponding to adenosine deaminase deficiency and xanthine oxidase deficiency. In both cases, the results showed potential diagnostic usefulness.  相似文献   

13.
The collision-induced dissociations of the even-electron [M + H](+) and/or [M - H](-) ions of 121 model compounds (mainly small aromatic compounds with one to three functional groups) ionized by electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) have been studied using an ion trap instrument, and the results are compared with the literature data. While some functional groups (such as COOH, COOCH(3), SO(3)H in the negative ion mode, or NO(2) in both the positive and negative ion modes) generally promote the loss of neutrals that are characteristic as well as specific, other functional groups (such as COOH in the positive ion mode) give rise to the loss of neutrals that are characteristic, but not specific. Finally, functional groups such as OH and NH(2) in aromatic compounds do not lead to the loss of a neutral that reflects the presence of these substituents. In general, the dissociation of [M + H](+) and [M - H](-) ions generated from aliphatic compounds or compounds containing an aliphatic moiety obeys the even-electron rule (loss of a molecule), but deviations from this rule (loss of a radical) are sometimes observed for aromatic compounds, in particular for nitroaromatic compounds. Thermochemical data and ab initio calculations at the CBS-QB3 level of theory provide an explanation for these exceptions. When comparing the dissociation behaviour of the even-electron [M + H](+) and/or [M - H](-) ions (generated by ESI or APCI) with that of the corresponding odd-electron [M](+) ions (generated by electron ionization, EI), three cases may be distinguished: (1) the dissociation of the two ionic species differs completely; (2) the dissociation involves the loss of a common neutral, yielding product ions differing in mass by one Da, or (3) the dissociations lead to a common product ion.  相似文献   

14.
The only relevant source for human exposure to dinitropyrenes is diesel engine emissions. Due to this specificity, dinitropyrenes may be used as biomarkers for monitoring human exposure to diesel engine emissions. Only few analytical methods have been described for the quantitation of dinitropyrenes and their metabolites, aminonitropyrenes, and diaminopyrenes. Therefore, for dinitropyrenes, aminonitropyrenes, and diaminopyrenes were selected as model compounds for the development of a sensitive HPLC-MS/MS method (high performance liquid chromatography coupled to triple quadrupole mass spectrometry) was to quantify polyaromatic amines and nitroarenes in biological matrices was developed optimal methods by comparing electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI) sources. Dinitropyrene was not effectively ionized and diaminopyrene yielded mainly [M(.)](+) ions by electrospray ionization. With APCI and APPI, precursor ions of diaminopyrene and aminonitropyrene were [M + H](+) and [M(.)](-) for dinitropyrene. Precursor ions with [M - 30(.)](-) for dinitropyrene and [M - 30 + H](+) for aminonitropyrene were observed. Reversed and normal phase HPLC-MS/MS with ESI, APCI and APPI were optimized separately with respect to unequivocal analyte identification and sensitivity. Normal phase HPLC coupled to APPI-MS/MS gave the highest precision and sensitivity for aminonitropyrene (6%/0.2 pg on column) and dinitropyrene (9%/0.5 pg on column). The limit of detection in spiked rat plasma was 5 pg/100 microL for aminonitropyrene (accuracy 82%) and 10 pg/100 microL for dinitropyrene (accuracy 105%). In plasma of rats treated with dinitropyrene by oral administration, no detectable levels of dinitropyrene but higher aminonitropyrene levels compared with intratracheal instillation were observed. These findings clearly demonstrate that dinitropyrene was absorbed after oral and intratracheal application and that a reduction of nitro groups occurs to a high extent in the reductive environment of the intestine. To our knowledge, this is the first time that aminonitropyrene was observed in plasma after intratracheal or oral administration directly demonstrating the reductive metabolism of dinitropyrene in vivo.  相似文献   

15.
Capillary electrophoresis-electrospray tandem mass spectrometry (CE-MS/MS) has been used to identify degradation products of the aspartyl tripeptides Phe-Asp-GlyNH(2) and Gly-Asp-PheNH(2) following incubation of the peptides in acidic and alkaline solution. At pH 2, the dominant decomposition products resulted from cleavage of the peptide backbone amide bonds to yield the respective dipeptides and amino acids. In addition, the cyclic aspartyl succinimide intermediate was identified by its [M+H](+) at m/z = 319 and the MS/MS spectrum exhibiting a simple fragmentation pattern with the [C(8)H(10)N](+)-ion as the principal daughter ion (a(1) of Phe-Asp-GlyNH(2)). Deamidation of the C-terminal amide as well as isomerization and enantiomerization of the Asp residue occurred upon incubation at pH 10. alpha-Asp and the isomeric beta-Asp and most of the diastereomeric forms (corresponding to D/L-Asp) could be separated by CE. All isomers could be identified based on their MS/MS spectra. Peptides with the amino acid sequence Phe-Asp-Gly containing the regular alpha-Asp bond displayed a highly intense b(2) fragment ion and a low abundant y(2) ion. In contrast, the y(2) and a(1) fragment were high abundant daughter ions in the mass spectra of beta-Asp peptides while the b(2) ion exhibited a lower abundance. Differences in the MS/MS spectra of the isomers of the peptides with the sequence Gly-Asp-Phe were obvious but less pronounced. In conclusion, CE-MS/MS proved to be a useful tool to study the decomposition and enantiomerization of peptides including the isomerization of Asp residues, due to the combination of efficient separation of isomers by CE and their identification by MS/MS.  相似文献   

16.
The fragmentation pathways of two selected ionophore antibiotics, salinomycin and monensin A, were studied using electrospray (ES) orthogonal acceleration quadrupole time-of-flight mass spectrometry in positive-ion mode. The identity of fragment ions was determined by accurate-mass measurements. In ES mass spectra, ion signals of relatively high intensity were observed for [M+Na](+) and [M-H+2Na](+) for each antibiotic. Each of the ion species [M+Na](+) and [M-H+2Na](+) for salinomycin and [M-H+2Na](+) for monensin A were isolated in turn and subjected to fragmentation. In the fragmentation of [M+Na](+) and [M-H+2Na](+) from salinomycin, only Cbond;C single bond cleavage and dehydration were observed. Product ion mass spectra obtained from [M-H+2Na](+) of monensin A showed that ether ring opening, Cbond;C single bond cleavage and dehydration fragmentations had occurred. Fragment ions containing two sodium atoms were observed in the product ion mass spectrum of [M-H+2Na](+) from salinomycin, but not from monensin A. Both type A (containing the terminal carboxyl group) and type F (containing the terminal hydroxyl group) fragment ions were observed in the product ion mass spectra of sodium adduct ions of salinomycin and monensin A.  相似文献   

17.
Mass spectra were acquired for a therapeutic 4-azasteroid (dutasteride), and some related compounds, using various ionization conditions (EI, CI, APCI and ESI) in both positive and negative ion modes. The ionization and fragmentation behavior of the compound dutasteride, its precursors and several analogs is reported. Positive atmospheric pressure chemical ionization (APCI+) and positive electrospray ionization (ESI+) produced distinctive collision-induced dissociation (CID) spectra for the respective [MH]+ ions of dutasteride. The spectral differences are attributed to ion populations having either different structures or different internal energy distributions (as a consequence of the method of ionization). Irrespective of their origin, the protonated molecules undergo interesting fragmentation reactions when collisionally activated. The identity of the major fragmentation products was confirmed by accurate mass measurement. The negative APCI mass spectrum of dutasteride displays extensive dehydrohalogenation, apparently due to the thermal component of the APCI process. Some of the resulting radical anions display remarkable stability toward collisional decomposition. Details of the fragmentation behavior for the negative ion species and their relationship to the positive ion results are discussed.  相似文献   

18.
纪三郝  巨勇  肖强  赵玉芬 《中国化学》2006,24(7):943-949
Novel steroidal phosphoramidate conjugates of 3'-azido-2',3'-dideoxythymidine(AZT)and amino acid esterswere synthesized and determined by positive and negative ion electrospray ionization mass spectrometry.The MSfragmentation behaviors of the steroidal phosphoramidate conjugates have been investigated in conjunction withtandem mass spectrometry of ESI-MS/MS.There were three characteristic fragment ions in the positive ion ESImass spectra,which were the Na adduct ions with loss of steroidal moiety,amino acid ester moiety from pseudomolecular ion(M Na)~ ,and the phosphoamino acid methyl ester Na adduct ion by α-cleavage of the phosphora-midate respectively.The main fragment ions in negative ion ESI mass spectra were the ion(M-HN_3)~-,the ion(M-AZT-H)~-,and the ion(M-steroidal moiety-H)~- besides the pseudo molecular ion(M-H)~-.Thefragmentation patterns did not depend on the attached amino acid ester moiety.  相似文献   

19.
化学电离(chem ical ionization,CI)是由Munson和Field[1]于1966年提出的一种质谱电离技术,其原理实际上是分子-离子反应[2,3]。在化学电离条件下,常常可以得到丰度很强的准分子离子峰,没有或很少碎片离子,能准确提供相对分子质量信息,但缺乏结构信息。我们在实验中发现,采用适  相似文献   

20.
The metabolism of arbidol in humans was studied using liquid chromatography-electrospray ionization (ESI) ion trap mass spectrometry (ITMS) after an oral dose of 300-mg arbidol. A total of 17 metabolites were identified including the glucuronide arbidol and the glucuronide sulfinylarbidol as the major metabolites.Arbidol and its metabolites have some common fragmentation patterns as a result of a homolytic bond cleavage. This cleavage will form odd-electron ions with the loss of a radical. The arbidol fragmentation sequence is first to lose dimethylamine (45 Da), followed by the loss of acetaldehyde (44 Da), and then the phenylthio radical (109 Da). This fragmentation sequence is also observed from N-demethylarbidol, sulfonylarbidol, and N-demethylsulfonylarbidol. However, for sulfinylarbidol and N-demethylsulfinylarbidol, the fragmentation sequence is reversed so that the phenylsulfiny radical (125 Da) was lost first, followed by the loss of dimethylamine (45 Da), and then acetaldehyde (44 Da). The exact masses for arbidol and sulfinylarbidol fragment ions were determined by a quadrupole/time-of-flight mass spectrometer (Q-TOF MS).The phase II metabolites, such as sulfate and glucuronide conjugates of arbidol, N-demethylarbidol, sulfonylarbidol, and N-demethylsulfonylarbidol were identified by observing the neutral loss of 80 Da (SO(3)) or 176 Da (glucuronic acid) from the MS(2) spectra. The sulfate and glucuronide conjugates such as sulfinylarbidol and N-demethylsulfinylarbidol had an unusual fragmentation pattern, in which the phenylsulfinyl radical (125 Da) was lost before the loss of SO(3) group (80 Da) or glucuronic acid (176 Da) occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号