首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microcolumn on-line preconcentration and separation system was developed for the flame atomic absorption spectrometric (FAAS) determination of trace levels of gold and palladium. The analytes were selectively adsorbed onto the microcolumn packed with 2-mercaptothiazole immobilized silica gel (MBTSG) in an acidity range of 0.1 to 6.0M HCl at a sampling flow rate of 4.0mLmin–1. The analytes adsorbed could be desorbed by a thiourea solution with a flow rate of 2.0mLmin–1. Most of the common coexisting metal ions at a concentration of 25.0mgmL–1 and anions at a concentration of 50.0mgmL–1 did not interfere with the preconcentration and determination of Au and Pd. The limits of detection (LOD), defined as three times the standard deviation of the blank (3), of Au and Pd are 10ngmL–1 and 26ngmL–1, respectively, with a preconcentration time of 60s. The relative standard deviation (RSD) is about 2.0% for 0.20µgmL–1 Au and 0.30µgmL–1 Pd. With a sample loading time of 30min, 6.7ngmL–1 Au and 10ngmL–1 Pd can be preconcentrated quantitatively. A geological sample, an anode slime and a secondary nickel alloy were successfully determined with the proposed method, and the results obtained showed good agreement with the certified values.Received December 23, 2002; accepted May 14, 2003 Published online August 8, 2003  相似文献   

2.
Nanometer-sized L-cysteine-capped ZnS particles were synthesized by a colloidal aqueous method. The functionalized nanoparticles are water-soluble and suitable for biological applications. In Tris-HCl buffer solution, nucleic acids combine with cysteine-capped nano-ZnS particles by intermolecular forces to form larger nanoparticles. There are two resonance light scattering peaks at 304.5nm and 373.8nm, respectively. The enhanced RLS is related to the concentration of nucleic acids in the range of 0.04 to 1.2µgmL–1 for calf thymus DNA and 0.2 to 1.0µgmL–1 for fish sperm DNA. The detection limits (3) are 19ngmL–1 for calf thymus DNA and 23ngmL–1 for fish sperm DNA, respectively. Four synthetic samples were analyzed satisfactorily.  相似文献   

3.
A simple and novel electrogenerated chemiluminescence (ECL) method for the determination of sulfite has been developed based on the energy transfer ECL process. It was found that a weak ECL signal of sulfite was electrochemically generated on a platinum electrode in neutral aqueous solution. The signal was strongly enhanced by rhodamine B as an energy receptor and further enhanced by the neutral surfactant Tween 80. In 0.10M phosphate buffer solution (pH=7.5) containing 2.0×10–6gmL–1 rhodamine B and 0.4% (v/v) Tween 80, the ECL response to the concentration of sulfite at a potential of 0.82V was linear over a range of 1.0×10–7gmL–1 to 8.0×10–6gmL–1, and the detection limit was 5×10–8gmL–1. The relative standard deviation (n=11, 1.0×10–6gmL–1) was 3.8%. The proposed method has been successfully applied to the determination of sulfite in pharmaceutical injections and white sugar samples.  相似文献   

4.
A sensitive chemiluminescence method for the determination of acetylspiramycin is presented. It is based on the greatly enhancive effect of acetylspiramycin on the chemiluminescence reaction between luminol and hydrogen peroxide in the flow system. The increase in chemiluminescence intensity was linearly proportional to the acetylspiramycin concentration in the range from 10pg·mL–1 to 2.0ng·mL–1 (r2=0.9979). The detection limit was 3pg·mL–1 (3). At a flow rate of 2.0mL·min–1, the process of determination, including sampling and washing, could be performed in 0.5 min, and the relative standard deviations of seven replicates are less than 5.0%. The proposed method was applied successfully to the determination of acetylspiramycin in pharmaceutical preparations, human urine and serum without pre-treatment. It was found that the excretive ratio of acetylspiramycin reached its maximum 2.0 hours after having been administered orally, and the excretive ratio in 12.0 hours was 8.4.  相似文献   

5.
Thallium in natural water samples was determined by electrothermal atomic absorption spectrometry after 1000-fold enrichment by mini solid-phase extraction from a 100-mL sample solution. A Tl-pyrrolidine-1-carbodithioate complex formed in a sample solution of pH 1.6 was extracted on fine particles of a cellulose nitrate resin dispersed in the sample solution. The cellulose nitrate resin was then collected on a membrane filter (25mmø) by filtration under suction using a glass funnel with an effective filtration area of 0.64cm2. As a result, a circular thin layer of the resin phase with a diameter of 9mm was obtained. Then the resin phase was carved out by an acrylate resin puncher with a 10-mmø hole to put it into a sample cup containing 100µL of 10mM HNO3 containing 0.5mM NaCl. The resin phase was suspended in the solution by ultrasonication. 1000-fold enrichment was thus attained within 15min, and the suspension was delivered to electrothermal atomic absorption spectrometry. The linear calibration graph was obtained in the range of 0–4ng of Tl in 100mL of a sample solution. The detection limit obtained by 3 method was 0.19ng. The proposed method was applied to the determination of Tl in natural water samples. The results showed the concentration of Tl in seawater was 12.1±1.8pgmL–1 for the calibration graph method and 12.6±1.4pgmL–1 for the standard addition method. A snowmelt sample contained 20.7±1.0pgmL–1 of Tl.  相似文献   

6.
A new method for the determination of nucleic acids at nanogram per mL level is proposed based on the enhanced resonance light scattering (RLS) signal resulting from the interaction of metalloporphyrins with nucleic acids. Under optimum conditions, the weak RLS signal of metalloporphyrin is enhanced by nucleic acids, and the enhanced RLS intensity is proportional to the concentration of nucleic acids. The detection limits of calf thymus DNA were 3.5ngmL–1, 2.9ngmL–1 and 1.0ngmL–1 for three metalloporphyrins, respectively. Synthetic samples were determined with satisfactory results.  相似文献   

7.
This paper presents a new simple and rapid procedure for the preconcentration and determination of platinum. It is based on the adsorption of the metal ion and preconcentration on a micro-column (3cm×3mm) placed in the injection valve of a flow injection (FI) manifold and packed with 1,5-bis[(2-pyridyl)-3-sulphophenyl-methylene]thiocarbonohydrazide (PSTH) immobilised on an anion-exchange resin (Dowex 1X8-200). The metal was eluted from the column using a solution of 2M HNO3. Various parameters and chemical variables affecting the preconcentration and determination of this metal by ICP-AES were evaluated. Five variables (sample flow rate, eluent flow rate, nebulizer flow rate, buffer concentration and mixing coil length) were considered as factors in the optimisation process. Interactions between analytical factors, and their optimal levels were investigated using two level factorial and central matrix designs. The optimum conditions established were applied to the determination of platinum by flow injection inductively coupled plasma atomic emission spectrometry (FI-ICP-AES). The method has a linear calibration range of 25 to at least 200ngmL–1 with a detection limit of 7.4ngmL–1 (S/N=3) and a throughput of 10 samples h–1 using 5min. preconcentration time. The precision of the method (RSD) was 3.06% ngmL–1 at the 50ngmL–1 level of Pt(IV) and 2.93% at the 150ngmL–1 level. The accuracy of the method was examined by determining the analyte content in spiked waters and by analysing an automobile catalyst standard reference material. The results show good agreement with the certified value and sufficiently high recoveries.  相似文献   

8.
A novel functionalized polyvinyl alcohol keto-derivative nanoparticle (PVAK) has been prepared in a one-step method using oxidation and degradation under ultrasonic irradiation. The nanoparticle is water-soluble, chemically stable, non-toxic and biocompatible. The surface of the nanoparticle is covered with abundant hydroxyl, carbonyl and carboxyl. At pH 3.0, the interactions of PVAK with different proteins can result in obviously enhanced RLS signals at 380nm. Under optimal conditions, the calibration graphs are linear over the range of 0.024.0µgmL–1 for human serum albumin (HSA), 0.023.5µgmL–1 for bovine serum albumin (BSA), and 0.053.5µgmL–1 for human -globulin (-G), respectively. Detection limits were 6.4ngmL–1 for HSA, 9.2ngmL–1 for BSA, and 12.5ngmL–1 for -G, respectively. The method was employed for the determination of total proteins in human serum with satisfactory results.  相似文献   

9.
The kinetics of formation and dissociation reactions of [Ru(CN)5L]3– with a series of heterocyclic ligands were studied in aqueous media. In this presence of an excess of heterocycle, the observed second order rate constants were calculated from the kobs versus [ligand] plot at =0.100m NaClO4. Activation parameters for the formation reactions (H=28±7kJmol–1 and S=140±35JK–1mol–1) are comparable for all systems, indicating a common mechanism. The kinetics of exchange of coordinated heterocycles for 1,3,5-triazine yielded a rate saturation typical of a limiting dissociative mechanism. Activation parameters of the limiting first order specific rate of dissociation reactions were H=85±7kJmol–1 and S=18±4JK–1mol–1. Equilibrium constants were calculated from the second order rates of formation and pseudo-first order rates of dissociation reaction.  相似文献   

10.
Immunoassay (IA) is a sensitive and selective approach for low level quantitation of drugs. Magnetic separation immunoassays use magnetic beads to facilitate the separation of bound labeled antigens from free antigens in solution. Digoxin was chosen for this study because low level analysis (ngmL–1) in biological samples isrequired, antibodies to digoxin were commercially available and derivatization procedures for fluorescence labeling were well established. A competitive immunoassay format was used in this study. Streptavidin coated magnetic beads were attached to biotinylated anti-digoxin antibodies for the separation. The inhibition curve for off-line magnetic separation immunoassay of digoxin in spiked plasma was characterized and the dynamic range of the curve was 0.25–2.5ngmL–1. A power fit weighted by the inverse of concentration was found to provide the best fit to the data (r=0.9934). The percent RSDs for the two controls, 0.8 and 2.2ngmL–1, were 9.95% and 20.62% (n=6) and the percent errors were 11.75% and 22.63% (n=6), respectively. The limit of detection (LOD) in plasma is 0.14ngmL–1. The dynamic range of the inhibition curve for on-line magnetic separation immunoassay of digoxin was 0.5–15ngmL–1 of digoxin. A quadratic fit was found to provide the best fit to the data (r=0.9937). The percent RSDs for the two controls, 4.0 and 12ngmL–1, were 14.1% and 10.7% (n=6) and the percent errors were 5.8% and 3.3% (n=6) from the spiked value, respectively. The LOD was estimated to be 0.44ngmL–1 (determined as two times the standard deviation of the blank, n=6). The on-line method has the advantages of being relatively easy to automate in the continuous flow mode and is adaptable for use in conjunction with HPLC separations.  相似文献   

11.
NMR imaging and spatially resolved diffusometry have been used to study the distribution of water within swollen cellophane and measure its diffusion coefficient. Water concentration and diffusion coefficient were found to be essentially constant across most of the film thickness. However, significantly slower diffusion was indicated for water near the film surface (D=0.5×10–9m2s–1) compared with water in the centre of the film (D=0.88×10–9m2s–1). This was also reflected in lower T 2 values at the edge of the film indicating water with more restricted motion. These observations were interpreted in terms of dense surface regions of cellulose (skin) over a more porous interior (core).  相似文献   

12.
Electrogenerated chemiluminescences (ECLs) of quinolizidine alkaloids including matrine (MT), sophocarpine (SC), and sophoridine (SRI) are studied. The light emission is caused by an electro-oxidation reaction between Ru(bpy)32+ and the tertiary amino group on the alkaloid compounds. A thin-layer flow cell equipped with a glassy carbon disk electrode (22.1mm2) at the potential of +1.30V (vs. Ag/AgCl) was applied for ECL observation. MT, SC and SRI were separated and quantitatively determined within 25min by an ODS-80 Ts reversed-phase column with a mobile phase containing 80mmolL–1 NaH2PO4–K2HPO4 buffer+acetonitrile (7:3)+40mmolL–1 sodium dodecyl sulfate (pH 6.5). The determination limit at an S/N of 3 ranged from 3×10–9gmL–1 for MT, 6×10–9gmL–1 for SC and 1×10–9gmL–1 for SRI. The recoveries are from 92 to 108%, with repeatability ranging from 1.3 to 4.5% (relative standard deviation). The method was successfully applied to the determination of quinolizidine alkaloids in Sophora flavescens samples.  相似文献   

13.
A flow injection method including chemiluminescence detection has been developed and applied to the determination of fluoroquinolones levofloxacin, moxifloxacin and trovafloxacin in tablets. The proposed method is based on the luminescent properties of the system Ce(IV)–sulphite–fluoroquinolone and the addition of a trivalent lanthanide ion as emission-sensitizer. The optimum conditions for chemiluminescence emission were investigated for each fluoroquinolone. The best results were achieved when employing Eu(III) as lanthanide cation for levofloxacin and moxifloxacin, and Tb(III) for trovafloxacin. These fluoroquinolones were determined over the concentration range of 0.5–3.5µgmL–1, 0.2–3.0µgmL–1 and 0.008–0.400µgmL–1, with detection limits of 0.100, 0.035 and 0.008µgmL–1, respectively. The relative standard deviations were in the range of 1.0–2.5% for all three cases. The method was applied to the determination of three fluoroquinolones in their respective pharmaceutical preparations and compared with an independent UV-spectrophotometric method. The results were satisfactory.  相似文献   

14.
The interaction of indophenol blue (IPB) with proteins in aqueous solution has been studied by optical absorption and Rayleigh light scattering (RLS) spectroscopy. At pH 3.8, the weak RLS of IPB is enhanced by proteins. Based on this phenomenon, a novel method for the determination of proteins at nanogram levels using the RLS technique is developed. The method is simple, practical and sensitive. The linear range is 0.25–20.9µgmL–1 for BSA, and 0.25–17.6µgmL–1 for HSA. The detection limits (S/N=3) are 23ngmL–1 for BSA and 22ngmL–1 for HAS. The results for the determination of proteins in human serum samples are very close to those obtained by an established clinical method. There is very little interference from amino acids, metal ions or other coexisting compounds.  相似文献   

15.
A new method for the simultaneous determination of heavy metal ions in Chinese herbal medicine by microwave digestion and reversed-phase high-performance liquid chromatography (RP-HPLC) has been developed. The Chinese herbal medicine samples were digested by microwave digestion. Lead, cadmium, mercury, nickel, copper, zinc, and tin ions in the digested samples were pre-column derivatized with tetra-(4-chlorophenyl)-porphyrin (T4-CPP) to form the colored chelates which were then enriched by solid phase extraction with C18 cartridge and eluted from the cartridge with tetrahydrofuran (THF). The chelates were separated on a Waters Xterra RP18 column by gradient elution with methanol (containing 0.05molL–1 pyrrolidine-acetic acid buffer salt, pH=10.0) and THF (containing 0.05molL–1 pyrrolidine-acetic acid buffer salt, pH=10.0) as mobile phase at a flow rate of 0.5mLmin–1 and detected with a photodiode array detector in the range of 350–600nm. In the original samples the detection limits of lead, cadmium, mercury, nickel, copper, zinc and tin are 4ngL–1, 3ngL–1, 6ngL–1, 5ngL–1, 2ngL–1, 6ngL–1, and 4ngL–1, respectively. This method was applied to the determination of lead, cadmium, mercury, nickel, copper, zinc and tin in Chinese herbal medicine samples with good results.  相似文献   

16.
2,3-Dihydroxypyridine loaded (via –N=N–linker) Amberlite XAD-2 (AXAD-2-DHP) was prepared and characterized by elemental analyses, TGA and FT-IR spectra. It (1g packed in a column of 1cm diameter; surface area 135.5m2g–1) was found to be an effective solid phase sorbent for enriching Zn2+, Mn2+, Ni2+, Pb2+, Cd2+, Cu2+, Fe3+ and Co2+ at pH 3.5 to 7.0 using flow rates between 1.0–5.0mLmin–1. For desorption (recovery 97.0–99.8%) of the metal ions, 8 to 10mL of 2.0molL–1 HCl or 1.5molL–1 HNO3 at a flow rate of between 2.0 and 4.0mLmin–1 were found most suitable. The t1/2 (time for 50% sorption) is between 2 and 10min when a 50mL solution (containing a total amount of metal of 2mg) was equilibrated with 0.5g of resin. Sorption of all metal ions except Pb2+ follows the Langmuir model, whereas for Pb the data fits with the Freundlich model. The sorption capacity is between 60.7 (for Cd) and 406.7 (for Cu) µmolg–1. The resin can withstand an acid concentration of 6molL–1 and can be reused for thirty cycles of sorption–desorption. The preconcentration factor varies between 100 and 300. For Cd, Ni and Cu the sorption capacity of 2,3-dihydroxypyridine loaded cellulose is lower than that of the present resin. The tolerance limits of electrolytes, humic acid, complexing agents, Ca2+ and Mg2+ in the enrichment of all metal ions are reported. The limits of detection are 3.88, 5.37, 8.72, 13.88, 4.71, 1.24, 0.59 and 0.30µgL–1 for Zn2+, Mn2+, Ni2+, Pb2+, Cd2+, Cu2+, Fe3+ and Co2+, respectively. The calibration curves for flame AAS determination were linear in the ranges 0.018–1.0, 0.067–5.0, 0.2–5.0, 0.9–20, 0.028–2.0, 0.077–5.0, 0.19–10 and 0.1–3.5µgmL–1, respectively. All the eight metal ions in river and synthetic water samples, Co in vitamin tablets and Zn in milk samples have been quantitatively enriched with Amberlite XAD-2-DHP and determined by flame atomic absorption spectrometry.  相似文献   

17.
A novel method for the determination of proteins in aqueous solutions has been developed based on the enhancement of resonance light scattering (RLS) of Ag nanoparticles in the presence of proteins. Factors including acidity of the media, concentration of Ag hydrosol, reaction time, temperature, and interference of non-protein substances were investigated. Under the optimal conditions, with the enhanced RLS signals at 452nm, the linear ranges of calibration curves were 0–0.8µgmL–1 for bovine serum albumin (BSA), 0–1.2µgmL–1 for human serum albumin (HSA), and 0–2.5µgmL–1 for human -IgG (-IgG), respectively. The detection limits were 1.3ngmL–1 for BSA, 10ngmL–1 for HAS, and 5.7ngmL–1 for -IgG.This method has been applied to the analysis of synthetic samples and real human serum samples, and the results were in good agreement with those reported by the hospital, indicating that the method presented here is not only sensitive and simple, but also reliable and suitable for practical applications.  相似文献   

18.
When DNA is mixed with the cationic polyelectrolyte poly(diallyldimethyl ammonium chloride) (PDDA), the DNA/PDDA complex is formed instantaneously at room temperature. This complex is much more efficient in enhancing the fluorescence of Hoechst 33258 (H 33258) than DNA alone. Based on the interaction of H 33258 with the DNA/PDDA complex, a new fluorescence assay for DNA is described. At pH 7.3 in Tris-HCl buffered solution, the DNA/PDDA complex causes a sharp enhancement in fluorescence intensity of H 33258. Simultanously, the emission maximum wavelength of H 33258 blueshifts from 490nm to 450nm, while the excitation redshifts from 345 to 350nm. The calibration graphs for calf thymus DNA (ctDNA) and herring sperm DNA (hsDNA) are both linear up to 5.0µgmL–1 when the concentration of H 33258 and PDDA are fixed at 1.5×10–6 and 1.6×10–5molL–1, respectively. The method is specific for native DNA. The 3 detection limits for ctDNA and hsDNA are 1.8 and 5.6ngmL–1, respectively, i.e. much lower than in the presence of H 33258 alone. Four synthetic samples were determined satisfactorily. This method can also be developed to investigate the formation and the nature of the complexes between DNA and polycations, which have recently been widely applied in some fields such as genetic engineering and gene therapy.  相似文献   

19.
A novel electroanalytical method for the determination of physcion is described for the first time. Physcion yields an adsorption catalytic voltammetric peak at –0.74V (vs. SCE) in 0.4molL–1 NH4Cl–NH3·H2O buffer solution (pH 10.5) at a carbon paste electrode (CPE). The experimental results indicated that physcion is efficiently accumulated at a CPE by adsorption. In the subsequent potential scan, physcion was reduced to a homologous anthrahydroquinone compound. The compound was then immediately oxidized to physcion by the dissolved oxygen in the solution, and then physcion was again reduced at the CPE. As a result, a cyclic catalytic reaction was established. The second-order derivative peak current is proportional to the physcion concentration in the ranges of 2.0×10–104.0×10–9molL–1 (accumulation 90s) and 4.0×10–92.0×10–8molL–1 (accumulation 60s). The limit of detection is 8×10–11molL–1 (S/N=3) for a 120s accumulation time. The method was applied to the direct determination of physcion in the medicinal plant polygonum multiflorum Thumb with satisfactory results.  相似文献   

20.
A novel type of core-shell organic nanoparticles (pyrene/poly-acrylic acid; PAA) has been prepared by precipitation polymerization under ultrasonic irradiation. It was characterized by transmission electron microscopy (TEM) and fluorescence lifetime. The lifetime is about 5µs, which is much longer than conventional organic dyes fluorescence lifetime. As the surface of the core-shell organic nanoparticles is covered with abundant carboxylic groups, the nanoparticles are water-soluble, stable and biocompatible. At pH 6.4, maximum fluorescence is produced, with the maximum excitation and emission wavelengths of 338nm and 397nm, respectively. Under optimum conditions, the calibration graphs are linear over the range of 4.0×10–51.0×10–2mgmL–1 for calf thymus DNA (ct-DNA) and 2.0×10–41.0×10–2mgmL–1 for fish sperm DNA (fs-DNA). The detection limits were 3.6×10–5mgmL–1 and 1.4×10–4mgmL–1 for ct-DNA and fs-DNA, respectively. The method was applied to the determination of ct-DNA and fs-DNA in synthetic samples and the results were satisfactory. The method is sensitive, stable, rapid and tolerant towards most interfering substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号