首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The use has been explored of both azide (N3-) and alkoxide-containing groups such as the anions of 2-(hydroxymethyl)pyridine (hmpH), 2,6-pyridinedimethanol (pdmH2), 1,1,1-tris(hydroxymethyl)ethane (thmeH3) and triethanolamine (teaH3) in Mn cluster chemistry. The 1:1:1:1 reactions of hmpH, NaN3 and NEt3 with Mn(ClO4)(2).6H 2O or Mn(NO3)2.H2O in MeCN/MeOH afford [MnII4MnIII6O4(N3)4(hmp)12](X)2 [X=ClO4- (1), N3- (2)]. The [Mn10(mu4-O) 4(mu3-N3)4]14+ core of the cation has a tetra-face-capped octahedral topology, with a central MnIII6 octahedron, whose eight faces are bridged by four mu 3-N3- and four mu 4-O2- ions, the latter also bridging to four extrinsic MnII atoms. The core has Td symmetry, but the complete [MnII4MnIII6O4(N3)4(hmp)12]2+ cation has rare T symmetry, which is crystallographically imposed. A similar reaction of Mn(ClO4) (2).6H2O with one equiv each of NaN3, thmeH3, pdmH2, and NEt3 in MeCN/MeOH led to [MnII4MnIII6O2(N3)6(pdmH)4(thme)4] (3). Complex 3 is at the same oxidation level as 1/2 but its core is structurally different, consisting of two edge-fused [MnII2MnIII4(mu4-O)]14+ octahedra. Replacement of thmeH3 with teaH3 in this reaction gave instead [MnII2MnIII2(N3)4(pdmH)2(teaH)2] (4), containing a planar Mn 4 rhombus. Variable-temperature, solid-state dc and ac magnetization studies were carried out on 1-4 in the 5.0-300 K range. Complexes 1 and 2 are completely ferromagnetically coupled with a resulting S=22 ground state, one of the highest yet reported. Fits of dc magnetization vs field (H) and temperature (T) data by matrix diagonalization gave S=22, g=2.00, and D approximately 0.0 cm(-1) (D is the axial zero-field splitting parameter). In contrast, the data for 3 revealed dominant antiferromagnetic interactions and a resulting S=0 ground state. Complex 4 contains weakly ferromagnetically coupled Mn atoms, leading to an S=9 ground-state and low-lying excited states, and exhibits out-of-phase ac susceptibility signals characteristic of a single-molecule magnet. Theoretical values of the exchange constants in 1 obtained with density functional theory and ZILSH calculations were in good agreement with experimental values. The combined work demonstrates the synthetic usefulness of alcohol-based chelates and azido ligands when used together, and the synthesis in the present work of two "isomeric" MnIII6MnII4 cores that differ in spin by a remarkable 22 units.  相似文献   

2.
A new synthetic procedure has been developed in Mn cluster chemistry involving reductive aggregation of permanganate (MnO4-) ions in MeOH in the presence of benzoic acid, and the first products from its use are described. The reductive aggregation of NBu(n)4MnO4 in MeOH/benzoic acid gave the new 4Mn(IV), 8Mn(III) anion [Mn12O12(OMe)2(O2CPh)16(H2O)2]2-, which was isolated as a mixture of two crystal forms (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.4CH2Cl2 (1a) and (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.CH2Cl2 (1b). The anion of 1 contains a central [Mn(IV)4(mu3-O)2(mu-O)2(mu-OMe)2]6+ unit surrounded by a nonplanar ring of eight Mn(III) atoms that are connected to the central Mn4 unit by eight bridging mu3-O2- ions. This compound is very similar to the well-known [Mn12O12(O2CR)16(H2O)4] complexes (hereafter called "normal Mn12"), with the main difference being the structure of the central cores. Longer reaction times (approximately 2 weeks) led to isolation of polymeric [Mn(OMe)(O2CPh)2]n2, which contains a linear chain of repeating [Mn(III)(mu-O2CPh)2(mu-OMe)Mn(III)] units. The chains are parallel to each other and interact weakly through pi-stacking between the benzoate rings. When KMnO4 was used instead of NBu(n)4MnO4, two types of compounds were obtained, [Mn12O12(O2CPh)16(H2O)4] (3), a normal Mn12 complex, and [Mn4O2(O2CPh)8(MeOH)4].2MeOH (4.2MeOH), a new member of the Mn4 butterfly family. The cyclic voltammogram of 1 exhibits three irreversible processes, two reductions and one oxidation. One-electron reduction of 1 by treatment with 1 equiv of I- in CH2Cl2 gave (NBu(n)4[Mn12O12(O2CPh)16(H2O)3].6CH2Cl2 (5.6CH2Cl2), a normal Mn12 complex in a one-electron reduced state. The variable-temperature magnetic properties of 1, 2, and 5 were studied by both direct current (dc) and alternating current (ac) magnetic susceptibility measurements. Variable-temperature dc magnetic susceptibility studies revealed that (i) complex 1 possesses an S = 6 ground state, (ii) complex 2 contains antiferromagnetically coupled chains, and (iii) complex 5 is a typical [Mn12]- cluster with an S = 19/2 ground state. Variable-temperature ac susceptibility measurements suggested that 5 and both isomeric forms of 1 (1a,b) are single-molecule magnets (SMMs). This was confirmed by the observation of hysteresis loops in magnetization vs dc field scans. In addition, 1a,b, like normal Mn12 clusters, display both faster and slower relaxing magnetization dynamics that are assigned to the presence of Jahn-Teller isomerism.  相似文献   

3.
The reaction between oxide-centered, triangular [MnIII3O(O2CR)6(py)3](ClO4) (R = Me (1), Et (2), Ph (3)) compounds and methyl 2-pyridyl ketone oxime (mpkoH) affords a new family of Mn/carboxylato/oximato complexes, [MnIII3O(O2CR)3(mpko)3](ClO4) [R = Me (4), Et (5), and Ph (6)]. As in 1-3, the cations of 4-6 contain an [MnIII3(mu3-O)]7+ triangular core, but with each Mn2 edge now bridged by an eta1:eta1:mu-RCO2- and an eta1:eta1:eta1:mu-mpko- group. The tridentate binding mode of the latter causes a buckling of the formerly planar [MnIII3(mu3-O)]7+ core, resulting in a relative twisting of the three MnIII octahedra and the central O2- ion now lying approximately 0.3 A above the Mn3 plane. This structural distortion leads to ferromagnetic exchange interactions within the molecule and a resulting S = 6 ground state. Fits of dc magnetization data for 4-6 collected in the 1.8-10.0 K and 10-70 kG ranges confirmed S = 6 ground states, and gave the following D and g values: -0.34 cm(-1) and 1.92 for 4, -0.34 cm(-1) and 1.93 for 5, and -0.35 cm(-1) and 1.99 for 6, where D is the axial zero-field splitting (anisotropy) parameter. Complexes 4-6 all exhibit frequency-dependent out-of-phase (chi" M) ac susceptibility signals suggesting them possibly to be single-molecule magnets (SMMs). Relaxation rate vs T data for complex 4 down to 1.8 K obtained from the chi" M vs T studies were supplemented with rate vs T data measured to 0.04 K via magnetization vs time decay studies, and these were used to construct Arrhenius plots from which was obtained the effective barrier to relaxation (Ueff) of 10.9 K. Magnetization vs dc field sweeps on single-crystals of 4.3CH2Cl2 displayed hysteresis loops exhibiting steps due to quantum tunneling of magnetization (QTM). The loops were essentially temperature-independent below approximately 0.3 K, indicating only ground-state QTM between the lowest-lying Ms = +/-6 levels. Complexes 4-6 are thus confirmed as the first triangular SMMs. High-frequency EPR spectra of single crystals of 4.3CH2Cl2 have provided precise spin Hamiltonian parameters, giving D = -0.3 cm(-1), B40 = -3 x 10(-5) cm(-1), and g = 2.00. The spectra also suggest a significant transverse anisotropy of E > or = 0.015 cm(-1). The combined work demonstrates the feasibility that structural distortions of a magnetic core imposed by peripheral ligands can "switch on" the properties of an SMM.  相似文献   

4.
Controlled potential electrolysis (CPE) procedures are described that provide access to complexes with a [Mn4(mu 3-O)3(mu 3-O2CR)]6+ core (3MnIII,MnIV) and a trigonal pyramidal metal topology, starting from species containing the [Mn4(mu 3-O)2]8+ core (4MnIII). [Mn4O2(O2CMe)6(py)2(dbm)2] (6): triclinic, P1, a = 10.868(3) A, b = 13.864(3) A, c = 10.625(3) A, alpha = 108.62(1) degrees, beta = 118.98(1) degrees, gamma = 89.34(2) degrees, V = 1307 A3, Z = 1, T = -131 degrees C, R (Rw) = 3.24 (3.70)%. [Mn4O2(O2CPh)6(py)(dbm)2] (8): monoclinic, P2(1)/c, a = 14.743(6) A, b = 15.536(8) A, c = 30.006(13) A, beta = 102.79(1) degrees, V = 6702 A3, Z = 4, T = -155 degrees C, R (Rw) = 4.32 (4.44)%. Both 6 and 8 contain a [Mn4O2]8+ core; 8 only has one py group, the fourth MnIII site being five-coordinate. (NBun4)[Mn4O2(O2CPh)7(dbm)2] (10) is available from two related procedures. CPE of 10 at 0.65 V vs ferocene in MeCN leads to precipitation of [Mn4O3(O2CPh)4(dbm)3] (11); similarly, CPE of 6 at 0.84 V in MeCN/CH2Cl2 (3:1 v/v) gives [Mn4O3(O2CMe)4(dbm)3] (12). Complex 11: monoclinic, P2(1)/n, a = 15.161(3) A, b = 21.577(4) A, c = 22.683(5) A, beta = 108.04(3) degrees, V = 7056 A3, Z = 4, T = -100 degrees C, R (wR2) = 8.63 (21.80)%. Complex 12: monoclinic, P2(1)/n, a = 13.549(2) A, b = 22.338(4) A, c = 16.618(2) A, beta = 103.74(1) degrees, V = 4885 A3, Z = 4, T = -171 degrees C, R (Rw) = 4.63 (4.45)%. Both 11 and 12 contain a [Mn4(mu 3-O)3(mu-O2CR)] core with a Mn4 trigonal pyramid (MnIV at the apex) and the RCO2- bridging the MnIII3 base. However, in 11, the carboxylate is eta 2,mu 3 with one O atom terminal to one MnIII and the other O atom bridging the other two MnIII ions, whereas in 12 the carboxylate is eta 1,mu 3, a single O atom bridging three MnIII ions. Variable-temperature, solid-state magnetic susceptibility studies on 11 and 12 show that, for both complexes, there are antiferromagnetic exchange interactions between MnIII/MnIV pairs, and ferromagnetic interactions between MnIII/MnIII pairs. In both cases, the resultant ground states of the complex is S = 9/2, confirmed by magnetization vs field studies in the 2.00-30.0 K and 0.50-50 kG temperature and field ranges, respectively.  相似文献   

5.
Treatments of Mn(O(2)CR)(2) (R = Me, Ph) with NBu(4)MnO(4) in CH(3)CN or CH(3)CN/CH(2)Cl(2) in the presence of acetic acid, delta(1)-cyclohexenephosphonic acid (C(6)H(9)PO(3)H(2)), and 2,2'-bipyridine or 1,10-phenanthroline result in three novel dodecamanganese(III) clusters [Mn(12)O(8)(O(2)CMe)(6)(O(3)PC(6)H(9))(7)(bipy)(3)] (1), [Mn(12)O(8)(O(2)CPh)(6)(O(3)PC(6)H(9))(7)(bipy)(3)] (2), and [Mn(12)O(8)(O(2)CPh)(6)(O(3)PC(6)H(9))(7)(phen)(3)] (3). They have a similar Mn(12) core of [Mn(III)(12)(mu(4)-O)(3)(mu(3)-O)(5)(mu-O(3)P)(3)] with a new type of topologic structure. Solid-state dc magnetic susceptibility measurements of complexes 1-3 reveal that dominant antiferromagnetic interactions are propagated between the magnetic centers. The ac magnetic measurements suggest an S = 2 ground state for compounds 1 and 3 and an S = 3 ground state for compound 2.  相似文献   

6.
The syntheses, crystal structures, and magnetochemical characterization are reported for three new mixed-valent Mn clusters [Mn(8)O(3)(OH)(OMe)(O(2)CPh)7(edte)(edteH(2))](2)CPh) (1), [Mn(12)O(4)(OH)(2)(edte)(4)C(l6)(H(2)O)(2)] (2), and [Mn(20)O(8)(OH)(4)(O(2)CMe)(6)(edte)(6)](ClO(4))(2) (3) (edteH(4) = (HOCH(2)CH(2))(2)NCH(2)CH(2)N(CH(2)CH(2)OH)(2) = N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine). The reaction of edteH(4) with Mn(O(2)CPh)(2), MnCl(2), or Mn(O(2)CMe)(2) gives 1, 2, and 3, respectively, which all possess unprecedented core topologies. The core of 1 comprises two edge-sharing [Mn(4)O(4)] cubanes connected to an additional Mn ion by a micro(3)-OH- ion and two alkoxide arms of edteH(22-). The core of 2 consists of a [Mn(12)(micro(4-)O)(4)](24+) unit with S4 symmetry. The core of 3 consists of six fused [Mn(4)O(4)] cubanes in a 3 x 2 arrangement and linked to three additional Mn atoms at both ends. Variable-temperature, solid-state dc and ac magnetization (M) studies were carried out on complexes 1-3 in the 5.0-300 K range. Fitting of the obtained M/Nmicro(B) vs H/T data by matrix diagonalization and including only axial zero-field splitting (ZFS) gave ground-state spin (S) and axial ZFS parameter (D) of S = 8, D = -0.30 cm-1 for 1, S = 7, D = -0.16 cm-1 for 2, and S = 8, D = -0.16 cm-1 for 3. The combined work demonstrates that four hydroxyethyl arms on an ethylenediamine backbone can generate novel Mn structural types not accessible with other alcohol-based ligands.  相似文献   

7.
Four heterometallic, enneanuclear Mn8Ce clusters [Mn8CeO8(O2CMe)12(H2O)4] (4), [Mn8CeO8(O2CMe)12(py)4] (5), [Mn8CeO8(O2CPh)12(MeCN)4] [Mn8CeO8(O2CPh)12(dioxane)4] (6), and [Mn8CeO8(O2CCHPh2)12(H2O)4] (7) have been prepared by various methods. Their cores are essentially isostructural and comprise a nonplanar, saddlelike [MnIII8O8]8+ loop containing a central CeIV ion attached to the eight micro3-O2- ions. Peripheral ligation around the [Mn8CeO8]12+ core is provided by eight micro- and four micro3-O2CR- groups. Terminal ligation on four MnIII atoms is provided by H2O in 4 and 7, pyridine in 5, and MeCN/dioxane in 6. Solid-state magnetic susceptibility studies, fits of dc magnetization vs field and temperature data, and in-phase ac susceptibility studies in a zero dc field have established that complexes 4, 5, and 7 possess S=16, S=4 or 5, and S=6+/-1 spin ground states, respectively, but in all cases there are very low-lying excited states. The large variation in the ground-state spins for this isostructural family is rationalized as due to a combination of weak exchange interactions between the constituent MnIII atoms, and the presence of both nearest-neighbor and next-nearest-interactions of comparable magnitudes. Magnetization vs applied dc field sweeps on single crystals of 4.4H2O and 7.4H2O.3MeCN.2CH2Cl2 down to 0.04 K have established that these two complexes are new single-molecule magnets (SMMs). The former also shows an exchange-bias, a perturbation of its single-molecule properties from very weak intermolecular interactions mediated by hydrogen-bonding interactions with lattice-water molecules of crystallization.  相似文献   

8.
The syntheses, structures, and magnetic properties are reported of the mixed-metal complexes [Ce4Mn10O10(OMe)6(O2CPh)16(NO3)2(MeOH)2(H2O)2] (1) and [Th6Mn10O22(OH)2(O2CPh)16-(NO3)2(H2O)8] (2), which were both prepared by the reaction of (NBun4)[Mn4O2(O2CPh)9(H2O)] (3) with a source of the heterometal in MeCN/MeOH. Complexes 1 and 2 crystallize in the monoclinic space group C2/c and the triclinic space group P, respectively. Complex 1 consists of 10 MnIII, 2 CeIII, and 2 CeIV atoms and possesses a very unusual tubular [Ce4Mn10O10(OMe)6]18+ core. Complex 2 consists of 10 MnIV and 6 ThIV atoms and possesses a [Th6Mn10O22(OH)2]18+ core with the metal atoms arranged in layers with a 2:3:6:3:2 pattern. Peripheral ligation around the cores is provided by 16 bridging benzoates, 2 chelating nitrates, and either (i) 2 each of terminal H2O and MeOH groups in 1 or (ii) 8 terminal H2O groups in 2. Complex 1 is the largest mixed-metal Ce/Mn cluster and the first 3d/4f cluster with mixed-valency in its lanthanide component, while complex 2 is the first Th/Mn cluster and the largest mixed transition metal/actinide cluster to date. Solid-state dc and ac magnetic susceptibility measurements on 1 and 2 establish that they possess S = 4 and 3 ground states, respectively. Ac susceptibility studies on 1 revealed nonzero frequency-dependent out-of-phase (chiM' ') signals at temperatures below 3 K; complex 2 displays no chiM' ' signals. However, single-crystal magnetization vs dc field scans at variable temperatures and variable sweep-rates down to 0.04 K on 1 revealed no noticeable hysteresis loops, except very minor ones at 0.04 K assignable to weak intermolecular interactions propagated by hydrogen bonds involving CeIII-bound ligands. Complex 1 is thus concluded not to be a single-molecule magnet (SMM), and the combined results thus represent a caveat against taking such ac signals as sufficient proof of a SMM.  相似文献   

9.
A new heptadentate N6-O1 ligand, N,N,N',N'-tetrakis(2-quinolylmethyl)-2-hydroxy-1,3-propanediamine (Htqhpn), was synthesized and used to generate compounds with linearly ordered MnIIMnIIIMnIIIMnII tetranuclear cores. This is the lowest valent tetranuclear manganese complex that exhibits a (mu2-O)2Mn2 core in the molecule. The electron paramagnetic resonance and magnetic measurements of these tetranuclear complexes suggest moderately strong antiferromagnetic coupling for the central MnIII2 core, with weak coupling between the MnII and MnIII centers.  相似文献   

10.
Water oxidation to evolve O2 in photosynthesis is catalyzed by an enzyme whose active site contains a mu-oxo-bridged manganese core. Catalytic O2 evolution has been difficult to establish by manganese-oxo complexes in homogeneous aqueous solutions. The reaction of [(OH2)(terpy)MnIII(mu-O)2MnIV(terpy)(OH2)]3+ (terpy = 2,2':6',2' '-terpyridine) (1) with a CeIV oxidant leads to the decomposition of 1 to the permanganate ion without O2 evolution in an aqueous solution but catalytically produces O2 from water when 1 is adsorbed on clay compounds. 18O-labeling experiments showed that the oxygen atoms in O2 originate exclusively from water. Catalysis of O2 evolution requires cooperation of 2 equiv of 1 adsorbed on clay compounds.  相似文献   

11.
The reaction between 2-(hydroxyethyl)pyridine (hepH) and a 2:1 molar mixture of [Mn3O(O2CMe)6(py)3](ClO4) and [Mn3O(O2CMe)6(py)3](py) in MeCN leads to isolation of [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 (1) in 10% yield. The complex is 2MnII,16MnIII and consists of a Mn4O6 central unit to either side of which is attached a Mn7O9 unit. Magnetization data collected in the 2.0-4.0 K and 20-50 kG ranges were fit to yield S = 13, g = 1.86, and D = -0.13 cm-1 = -0.19 K, where D is the axial zero-field splitting parameter. AC susceptibility studies in the 0.04-4.0 K range at frequencies up to 996 Hz display out-of-phase (chiM' ') signals, indicative of a single-molecule magnet (SMM). Magnetization vs applied DC field scans exhibit hysteresis at <1.0 K, confirming 1 to be a SMM. DC magnetization decay data were collected on both a microcrystalline sample and a single crystal, and the combined data were used to construct an Arrhenius plot. Between 3.50 and 0.50 K, the relaxation rate is temperature-dependent with an effective barrier to relaxation (Ueff) of 14.8 cm-1 = 21.3 K. Below ca. 0.25 K, the relaxation rate is temperature-independent at 1.3 x 10-8 s-1, indicative of quantum tunneling of magnetization (QTM) between the lowest energy Ms = +/-13 levels of the S = 13 state. Complex 1 is both the largest spin and highest nuclearity SMM to exhibit QTM.  相似文献   

12.
The complex [(terpy)(H(2)O)Mn(III)(O)(2)Mn(IV)(OH(2))(terpy)](NO(3))(3) (terpy = 2,2':6,2' '-terpyridine) (1)catalyzes O(2) evolution from either KHSO(5) (potassium oxone) or NaOCl. The reactions follow Michaelis-Menten kinetics where V(max) = 2420 +/- 490 mol O(2) (mol 1)(-1) hr(-1) and K(M) = 53 +/- 5 mM for oxone ([1] = 7.5 microM), and V(max) = 6.5 +/- 0.3 mol O(2) (mol 1)(-1) hr(-1) and K(M) = 39 +/- 4 mM for hypochlorite ([1] = 70 microM), with first-order kinetics observed in 1 for both oxidants. A mechanism is proposed having a preequilibrium between 1 and HSO(5-) or OCl(-), supported by the isolation and structural characterization of [(terpy)(SO(4))Mn(IV)(O)(2)Mn(IV)(O(4)S)(terpy)] (2). Isotope-labeling studies using H(2)(18)O and KHS(16)O(5) show that O(2) evolution proceeds via an intermediate that can exchange with water, where Raman spectroscopy has been used to confirm that the active oxygen of HSO(5-) is nonexchanging (t(1/2) > 1 h). The amount of label incorporated into O(2) is dependent on the relative concentrations of oxone and 1. (32)O(2):(34)O(2):(36)O(2) is 91.9 +/- 0.3:7.6 +/- 0.3:0.51 +/- 0.48, when [HSO(5-)] = 50 mM (0.5 mM 1), and 49 +/- 21:39 +/- 15:12 +/- 6 when [HSO(5-)] = 15 mM (0.75 mM 1). The rate-limiting step of O(2) evolution is proposed to be formation of a formally Mn(V)=O moiety which could then competitively react with either oxone or water/hydroxide to produce O(2). These results show that 1 serves as a functional model for photosynthetic water oxidation.  相似文献   

13.
[MnIII/IV2(-O)2(terpy)2(OH2)2](NO3)3 (1, where terpy = 2,2':6'2' '-terpyridine) + oxone (2KHSO5 x KHSO4 x K2SO4) provides a functional model system for the oxygen-evolving complex of photosystem II that is based on a structurally relevant Mn-(-O)2-Mn moiety (Limburg, J.; et al. J. Am. Chem. Soc. 2001, 123, 423-430). In this study, electron paramagnetic resonance, ultraviolet-visible spectroscopy, electrospray ionization mass spectrometry, X-ray absorption spectroscopy, and gas-phase stable isotope ratio mass spectrometry were utilized to identify the title compounds in the catalytic solution. We find that (a) O2 evolution does not proceed through heterogeneous catalysis by MnO2 or other decomposition products, that (b) O atoms from solvent water are incorporated into the evolved O2 to a significant extent but not into oxone, that (c) the MnIII/IV2 title compound 1 is an active precatalyst in the catalytic cycle of O2 evolution with oxone, while the MnIV/IV2 oxidation state is not, and that (d) the isotope label incorporation in the evolved O2, together with points a-c above, is consistent with a mechanism involving competing reactions of oxone and water with a "MnV=O" intermediate in the O-O bond-forming step.  相似文献   

14.
The reaction of Mn(O(2)CPh)(2).2H(2)O and PhCO(2)H in EtOH/MeCN with NBu(n)(4)MnO(4) gives (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(9)(H(2)O)] (4) in high yield (85-95%). Complex 4 crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -129 degrees C: a = 17.394(3) ?, b = 19.040(3) ?, c = 25.660(5) ?, beta = 103.51(1) degrees, V = 8262.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 9.11% (9.26%) using 4590 unique reflections with F > 2.33sigma(F). The anion of 4 consists of a [Mn(4)(&mgr;(3)-O)(2)](8+) core with a "butterfly" disposition of four Mn(III) atoms. In addition to seven bridging PhCO(2)(-) groups, there is a chelating PhCO(2)(-) group at one "wingtip" Mn atom and terminal PhCO(2)(-) and H(2)O groups at the other. Complex 4 is an excellent steppingstone to other [Mn(4)O(2)]-containing species. Treatment of 4 with 2,2-diethylmalonate (2 equiv) leads to isolation of (NBu(n)(4))(2)[Mn(8)O(4)(O(2)CPh)(12)(Et(2)mal)(2)(H(2)O)(2)] (5) in 45% yield after recrystallization. Complex 5 is mixed-valent (2Mn(II),6Mn(III)) and contains an [Mn(8)O(4)](14+) core that consists of two [Mn(4)O(2)](7+) (Mn(II),3Mn(III)) butterfly units linked together by one of the &mgr;(3)-O(2)(-) ions in each unit bridging to one of the body Mn atoms in the other unit, and thus converting to &mgr;(4)-O(2)(-) modes. The Mn(II) ions are in wingtip positions. The Et(2)mal(2)(-) groups each bridge two wingtip Mn atoms from different butterfly units, providing additional linkage between the halves of the molecule. Complex 5.4CH(2)Cl(2) crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -165 degrees C: a = 16.247(5) ?, b = 27.190(8) ?, c = 17.715(5) ?, beta = 113.95(1) degrees, V = 7152.0 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 8.36 (8.61%) using 4133 unique reflections with F > 3sigma(F). The reaction of 4 with 2 equiv of bpy or picolinic acid (picH) yields the known complex Mn(4)O(2)(O(2)CPh)(7)(bpy)(2) (2), containing Mn(II),3Mn(III), or (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(pic)(2)] (6), containing 4Mn(III). Treatment of 4 with dibenzoylmethane (dbmH, 2 equiv) gives the mono-chelate product (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(8)(dbm)] (7); ligation of a second chelate group requires treatment of 7 with Na(dbm), which yields (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(dbm)(2)] (8). Complexes 7 and 8 both contain a [Mn(4)O(2)](8+) (4Mn(III)) butterfly unit. Complex 7 contains chelating dbm(-) and chelating PhCO(2)(-) at the two wingtip positions, whereas 8 contains two chelating dbm(-) groups at these positions, as in 2 and 6. Complex 7.2CH(2)Cl(2) crystallizes in monoclinic space group P2(1) with the following unit cell parameters at -170 degrees C: a = 18.169(3) ?, b = 19.678(4) ?, c = 25.036(4) ?, beta = 101.49(1) degrees, V = 8771.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 7.36% (7.59%) using 10 782 unique reflections with F > 3sigma(F). Variable-temperature magnetic susceptibility studies have been carried out on powdered samples of complexes 2 and 5 in a 10.0 kG field in the 5.0-320.0 K range. The effective magnetic moment (&mgr;(eff)) for 2 gradually decreases from 8.61 &mgr;(B) per molecule at 320.0 K to 5.71 &mgr;(B) at 13.0 K and then increases slightly to 5.91 &mgr;(B) at 5.0 K. For 5, &mgr;(eff) gradually decreases from 10.54 &mgr;(B) per molecule at 320.0 K to 8.42 &mgr;(B) at 40.0 K, followed by a more rapid decrease to 6.02 &mgr;(B) at 5.0 K. On the basis of the crystal structure of 5 showing the single Mn(II) ion in each [Mn(4)O(2)](7+) subcore to be at a wingtip position, the Mn(II) ion in 2 was concluded to be at a wingtip position also. Employing the reasonable approximation that J(w)(b)(Mn(II)/Mn(III)) = J(w)(b)(Mn(III)/M(III)), where J(w)(b) is the magnetic exchange interaction between wingtip (w) and body (b) Mn ions of the indicated oxidation state, a theoretical chi(M) vs T expression was derived and used to fit the experimental molar magnetic susceptibility (chi(M)) vs T data. The obtained fitting parameters were J(w)(b) = -3.9 cm(-)(1), J(b)(b) = -9.2 cm(-)(1), and g = 1.80. These values suggest a S(T) = (5)/(2) ground state spin for 2, which was confirmed by magnetization vs field measurements in the 0.5-50.0 kG magnetic field range and 2.0-30.0 K temperature range. For complex 5, since the two bonds connecting the two [Mn(4)O(2)](7+) units are Jahn-Teller elongated and weak, it was assumed that complex 5 could be treated, to a first approximation, as consisting of weakly-interacting halves; the magnetic susceptibility data for 5 at temperatures >/=40 K were therefore fit to the same theoretical expression as used for 2, and the fitting parameters were J(w)(b) = -14.0 cm(-)(1) and J(b)(b) = -30.5 cm(-)(1), with g = 1.93 (held constant). These values suggest an S(T) = (5)/(2) ground state spin for each [Mn(4)O(2)](7+) unit of 5, as found for 2. The interactions between the subunits are difficult to incorporate into this model, and the true ground state spin value of the entire Mn(8) anion was therefore determined by magnetization vs field studies, which showed the ground state of 5 to be S(T) = 3. The results of the studies on 2 and 5 are considered with respect to spin frustration effects within the [Mn(4)O(2)](7+) units. Complexes 2 and 5 are EPR-active and -silent, respectively, consistent with their S(T) = (5)/(2) and S(T) = 3 ground states, respectively.  相似文献   

15.
The use of di-2-pyridyl ketone oxime, (py)2CNOH, in manganese carboxylate chemistry has been investigated. Using a variety of synthetic routes complexes [Mn(O2CPh)2{(py)2CNOH}2].0.25H2O (1.0.25H2O), Mn4(O2CPh)2{(py)2CO2}2{(py)2CNO}2Br2].MeCN (2.MeCN), [Mn4(O2CPh)2{(py)2CO2}2{(py)2CNO}2Cl(2)].2MeCN (3.2MeCN), [Mn4(O2CMe)2{(py)2CO2}2{(py)2CNO}2Br2].2MeCN (4.2MeCN), [Mn4(O2CMe)2{(py)2CO2}2{(py)2CNO}2(NO3)2].MeCN.H2O (5.MeCN.H2O) and [Mn2(O2CCF3)2(hfac)2{(py)2CNOH}2] (6) have been isolated in good yields. Remarkable features of the reactions are the in situ transformation of an amount of (py)2CNOH to yield the coordination dianion, (py)2CO2(2-), of the gem-diol derivative of di-2-pyridyl ketone in 2-5, the coordination of nitrate ligands in 5 although the starting materials are nitrate-free and the incorporation of CF3CO2- ligands 6 in which was prepared from Mn(hfac)(2).3H2O (hfac(-)= hexafluoroacetylacetonate). Complexes 2-4 have completely analogous molecular structures. The centrosymmetric tetranuclear molecule contains two MnII and two MnIII six-coordinate ions held together by four mu-oxygen atoms from the two 3.2211 (py)2CO2(2-) ligands to give the unprecedented [MnII(mu-OR)MnIII(mu-OR)2MnIII(mu-OR)MnII]6+ core consisting of a planar zig-zag array of the four metal ions. Peripheral ligation is provided by two 2.111 (py)2CNO-, two 2.11 PhCO2- and two terminal Br- ligands. The overall molecular structure 5 of is very similar to that of 2-4 except for the X- being chelating NO3-. A tentative reaction scheme was proposed that explains the observed oxime transformation and nitrate generation. The CF3CO2- ligand is one of the decomposition products of the hfac- ligand. The two Mn(II) ions are bridged by two neutral (py)2CNOH ligands which adopt the 2.0111 coordination mode. A chelating hfac- ligand and a terminal CF3CO2- ion complete a distorted octahedral geometry at each metal ion. The CV of complex reveals irreversible reduction and oxidation processes. Variable-temperature magnetic susceptibility studies in the 2-300 K range for the representative tetranuclear clusters 2 and 4 reveal weak antiferromagnetic exchange interactions, leading to non-magnetic ST = 0 ground states. Best-fit parameters obtained by means of the program CLUMAG and applying the appropriate Hamiltonian are J(Mn(II)Mn((III))=-1.7 (2), -1.5 (4) cm(-1) and J(Mn(III)Mn(III))=-3.0 (2, 4) cm(-1).  相似文献   

16.
Zheng YZ  Xue W  Zhang WX  Tong ML  Chen XM 《Inorganic chemistry》2007,46(16):6437-6443
Two new mixed-valence manganese-carboxylate clusters, [MnIII9MnIV6(O2CPh)12(micro3-O)13(micro-O)4(micro-OMe)5(MeOH)4(H2O)5]2.1.5PhCO2H.MeOH.6H2O (1, PhCO2H = benzoic acid) and [MnIII9MnIV6(O2CCh)12(micro3-O)13(micro-O)4(micro-OMe)5(MeOH)3(H2O)6].0.5MeOH.2.5H2O (2, ChCO2H= cyclohexanecarboxylic acid) contain new disklike Mn15 cores. Both 1 and 2 can be synthesized by the conventional manganese redox reaction (MnO4- oxidizing Mn2+) in methanol solution. 2 can be also synthesized via the site-specific ligand substitution reaction from 1. 1 crystallizes in the triclinic space group P, whereas 2 crystallizes in the trigonal space group P. Magnetic study shows that both 1 and 2 have the same ground spin states ST = 2. Compared to the silence of the out-of-phase ac susceptibility of 1, 2 shows clearly slow magnetic relaxation behavior above 1.8 K due to the dramatically enhanced axial magnetic anisotropy (D = -0.89 and -1.58 cm-1 for 1 and 2, respectively, which was obtained by fitting the plots of M vs H/T with the program ANISOFIT 2.0).  相似文献   

17.
The first high nuclearity, mixed-metal Bi(III)/Mn(IV) and Bi(III)/Mn(III) complexes are reported. The former complexes are [Bi(2)Mn(IV)(6)O(9)(O(2)CEt)(9)(HO(2)CEt)(NO(3))(3)] (1) and [Bi(2)Mn(IV)(6)O(9)(O(2)CPh)(9)(HO(2)CPh)(NO(3))(3)] (2) and were obtained from the comproportionation reaction between Mn(O(2)CR)(2) and MnO(4)(-) in a 10:3 ratio in the presence of Bi(NO(3))(3) (3 equiv) in either a H(2)O/EtCO(2)H (1) or MeCN/PhCO(2)H (2) solvent medium. The same reaction that gives 2, but with Bi(O(2)CMe)(3) and MeNO(2) in place of Bi(NO(3))(3) and MeCN, gave the lower oxidation state product [BiMn(III)(10)O(8)(O(2)CPh)(17)(HO(2)CPh)(H(2)O)] (3). Complexes 1 and 2 are near-isostructural and possess an unusual and high symmetry core topology consisting of a Mn(IV)(6) wheel with two central Bi(III) atoms capping the wheel on each side. In contrast, the [BiMn(III)(10)O(8)](17+) core of 3 is low symmetry, comprising a [BiMn(3)(μ(3)-O)(2)](8+) butterfly unit, four [BiMn(3)(μ(4)-O)](10+) tetrahedra, and two [BiMn(2)(μ(3)-O)](7+) triangles all fused together by sharing common Mn and Bi vertices. Variable-temperature, solid-state dc and ac magnetization data on 1-3 in the 1.8-300 K range revealed that 1 and 2 possess an S = 0 ground state spin, whereas 3 possesses an S = 2 ground state. The work offers the possibility of access to molecular analogs of the multifunctional Bi/Mn/O solids that are of such great interest in materials science.  相似文献   

18.
The preparation and properties of the first strontium-manganese molecular complex are described. The reaction of (NBu(n)4)[Mn4O2(O2CPh)9(H 2O)] (4Mn(III)) with Sr(ClO4)2 in MeCN/MeOH led to the isolation of [SrMn14O11(OMe)3(O2CPh)18(MeCN)2] ( 1; 13Mn(III), Mn(II)). The structure of 1 consists of two [Mn4O3(OMe)] cubane units attached to a central, near-planar, trinuclear [Mn3O4] unit, to which are also attached a Mn and a Sr above the plane and a [Mn2O(OMe)] rhomb below the plane. Peripheral ligation is provided by 18 bridging benzoate and two terminal MeCN groups. Variable-temperature and -field dc magnetization (M) data were collected in the 1.8-10 K and 0.1-4.0 T ranges and fit by matrix diagonalization methods to give S = 9/2, D = -0.50(5) cm(-1), and g = 1.88(10), where S is the ground-state spin and D is the axial zero-field splitting parameter. Magnetization versus dc field sweeps at various temperatures and scan rates exhibited hysteresis loops, confirming 1 to be a new single-molecule magnet. Because complex 1 is the initial molecular example of intimately associated Mn and Sr atoms, Sr EXAFS studies have been performed for the first time on a synthetic Sr-containing molecule. This has also allowed comparisons with the EXAFS data on the Sr-substituted water oxidizing complex (WOC) of Photosystem II (PS II), which contains a SrMn4 complex.  相似文献   

19.
The employment of the anion of 2,6-diacetylpyridine dioxime (dapdoH2) as a pentadentate chelate in transition metal cluster chemistry is reported. The syntheses, crystal structures, and magnetochemical characterization are described for [Mn6O2(OMe)2(dapdo)2(dapdoH)4](ClO4)2 (1), [Mn6O2(OMe)2(dapdo)2(dapdoH)4][Ca(NO3)4] (2), and [Mn8O4(OH)4(OMe)2(N3)2(dapdo)2(dapdoH)2(H2O)2] (3). The reaction of [Mn3O(O2CMe)6(py)3](ClO4) with 3 equiv of dapdoH2 (with or without 2 equiv of NEt3) in MeOH gave 1. The same cation, but with a [Ca(NO3)4]2- anion, was found in complex 2, which was obtained from the reaction in MeOH between Mn(NO3)2, Ca(NO3)2, and dapdoH2 in the presence of NEt3. In contrast, addition of NaN3 to several reactions comprising MnCl2, dapdoH2, and NEt3 in MeOH gave the octanuclear complex 3. Complexes 1-3 all possess rare topologies and are mixed-valence: 2MnII, 4MnIII for 1 and 2, and 2MnII, 6MnIII for 3. The core of the cation of 1 and 2 consists of two edge-sharing Mn4 tetrahedra at the center of each of which is a micro4-O2- ion. Peripheral ligation is provided by two micro-OMe-, four micro-dapdoH-, and two micro3-dapdo2- groups. The core of 3 consists of two [MnIIMnIII3(micro3-O)2]7+ "butterfly" units linked together by one of the micro3-O2- ions, which thus becomes micro4. Peripheral ligation is provided by four micro-OMe-, two micro-OH-, two micro-dapdoH-, and two micro4-dapdo2- groups. Variable-temperature, solid-state dc and ac magnetization studies were carried out on complexes 1-3 in the 5.0-300 K range; the data for 1 and 2 are identical. Fitting of the obtained magnetization versus field (H) and temperature (T) data by matrix diagonalization and including only axial anisotropy (zero-field splitting, D) established that 1 possesses an S=5 ground state with D=-0.24 cm(-1). For 3, low-lying excited states precluded obtaining a good fit from the magnetization data, and the ground state was instead determined from the ac data, which indicated an S=1 ground state for 3. The combined work demonstrates the ligating flexibility of pyridyl-dioxime chelates and their usefulness in the synthesis of new polynuclear Mnx clusters without requiring the co-presence of carboxylate ligands.  相似文献   

20.
The syntheses, crystal structures, and magnetochemical characterization of four new iron clusters [Fe7O4(O2CPh)11(dmem)2] (1), [Fe7O4(O2CMe)11(dmem)2] (2), [Fe6O2(OH)4(O2CBut)8(dmem)2] (3), and [Fe3O(O2CBut)2(N3)3(dmem)2] (4) (dmemH=Me2NCH2CH2N(Me)CH2CH2OH)=2-{[2-(dimethylamino)ethyl]methylamino}ethanol) are reported. The reaction of dmemH with [Fe3O(O2CR)6(H2O)3](NO3) (R=Ph (1), Me (2), and But (3)) gave 1, 2, and 3, respectively, whereas 4 was obtained from the reaction of 3 with sodium azide. The complexes all possess rare or novel core topologies. The core of 1 comprises two [Fe4(mu3-O)2]8+ butterfly units sharing a common body Fe atom. The core of 2 consists of a [Fe3O3] ring with each doubly bridging O2- ion becoming mu3 by also bridging to a third, external Fe atom; a seventh Fe atom is attached on the outside of this core via an additional mu3-O2- ion. The core of 3 consists of a [Fe4(mu3-O)2]8+ butterfly unit with an Fe atom attached above and below this by bridging O atoms. Finally, the core of 4 is an isosceles triangle bridged by a mu3-O2- ion with a rare T-shaped geometry and with the azide groups all bound terminally. Variable-temperature, solid-state dc, and ac magnetization studies were carried out on complexes 1-4 in the 5.0-300 K range. Fitting of the obtained magnetization (M) vs field (H) and temperature (T) data by matrix diagonalization and including only axial anisotropy (zero-field splitting) established that 1, 2, and 4 each possess an S=5/2 ground state spin, whereas 3 has an S=5 ground state. As is usually the case, good fits of the magnetization data could be obtained with both positive and negative D values. To obtain more accurate values and to determine the sign of D, high-frequency EPR studies were carried out on single crystals of representative complexes 1.4MeCN and 3.2MeCN, and these gave D=+0.62 cm-1 and |E|>or=0.067 cm-1 for 1.4MeCN and D=-0.25 cm-1 for 3.2MeCN. The magnetic susceptibility data for 4 were fit to the theoretical chiM vs T expression derived by the use of an isotropic Heisenberg spin Hamiltonian and the Van Vleck equation, and this revealed the pairwise exchange parameters to be antiferromagnetic with values of Ja=-3.6 cm-1 and Jb=-45.9 cm-1. The combined results demonstrate the ligating flexibility of dmem and its usefulness in the synthesis of a variety of Fex molecular species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号