首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional equationf(x,y)+g(x)h(y)F(u/1?x,ν/1?y)=f(u,ν)+g(u)h(ν)F(x/1?u,y/1?ν) ... (1) forx, y, u, ν ∈ [0, 1) andx+u,y+ν ∈ [0,1) whereg andh satisfy the functional equationφ (x+y?xy)=φ(x)φ(y)... (2) has been solved for some non-constant solution of (2) in [0, 1] withφ (0)=1,φ(1)=0 and the solution is used in characterising some measures of information.  相似文献   

2.
In this paper, the following nonlinear wave equation is considered; □u=F(u, D u, D x D u),x∈R n ,t>0; u=u 0 (x), u t =u 1 (x), t=0. We prove that if the space dimensionn ≥ 4 and the nonlinearityF is smooth and satisfies a mild condition in a small neighborhood of the origin, then the above problem admits a unique and smooth global solution (in time) whenever the initial data are small and smooth. The strategy in proof is to use and improve Global Sobolev Inequalities in Minkowski space (see [8]), and to develop a generalized energy estimate for solutions.  相似文献   

3.
The number defined by the title is denoted by Ψ(x, y). Let u = log xlog y and let ?(u) be the function determined by ?(u) = 1, 0 ≤ u ≤ 1, u?′(u) = ? ?(u ? 1), u > 1. We prove the following:Theorem. For x sufficiently large and log y ≥ (log log x)2, Ψ(x,y) ? x?(u) while for 1 + log log x ≤ log y ≤ (log log x)2, and ε > 0, Ψ(x, y) ? ε x?(u) exp(?u exp(?(log y)(35 ? ε))).The proof uses a weighted lower approximation to Ψ(x, y), a reinterpretation of this sum in probability terminology, and ultimately large-deviation methods plus the Berry-Esseen theorem.  相似文献   

4.
The paper describes the general form of an ordinary differential equation of the second order which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form
f( t,uy,wy + uuz ) = f( x,y,z )u2 u+ g( t,x,u,u,w )uz + h( t,x,u,u,w )y + 2uwzf\left( {t,\upsilon y,wy + u\upsilon z} \right) = f\left( {x,y,z} \right)u^2 \upsilon + g\left( {t,x,u,\upsilon ,w} \right)\upsilon z + h\left( {t,x,u,\upsilon ,w} \right)y + 2uwz  相似文献   

5.
Suppose that ? n is the p-dimensional space with Euclidean norm ∥ ? ∥, K (? p ) is the set of nonempty compact sets in ? p , ?+ = [0, +∞), D = ?+ × ? m × ? n × [0, a], D 0 = ?+ × ? m , F 0: D 0K (? m ), and co F 0 is the convex cover of the mapping F 0. We consider the Cauchy problem for the system of differential inclusions $$\dot x \in \mu F(t,x,y,\mu ),\quad \dot y \in G(t,x,y,\mu ),\quad x(0) = x_0 ,\quad y(0) = y_0$$ with slow x and fast y variables; here F: DK (? m ), G: DK (? n ), and μ ∈ [0, a] is a small parameter. It is assumed that this problem has at least one solution on [0, 1/μ] for all sufficiently small μ ∈ [0, a]. Under certain conditions on F, G, and F 0, comprising both the usual conditions for approximation problems and some new ones (which are weaker than the Lipschitz property), it is proved that, for any ε > 0, there is a μ0 > 0 such that for any μ ∈ (0, μ0] and any solution (x μ(t), y μ(t)) of the problem under consideration, there exists a solution u μ(t) of the problem ${\dot u}$ ∈ μ co F 0 (t, u), u(0) = x 0 for which the inequality ∥x μ(t) ? u μ(t)∥ < ε holds for each t ∈ [0, 1/μ].  相似文献   

6.
In Ref. 1, Jittorntrum proposed an implicit function theorem for a continuous mappingF:R n ×R m R n, withF(x 0,y 0)=0, that requires neither differentiability ofF nor nonsingularity of x F(x 0,y 0). In the proof, the local one-to-one condition forF(·,y):A R n R n for ally B is consciously or unconsciously treated as implying thatF(·,y) mapsA one-to-one ontoF(A, y) for ally B, and the proof is not perfect. A proof can be given directly, and the theorem is shown to be the strongest, in the sense that the condition is truly if and only if.  相似文献   

7.
In this paper, on the basis of the results of Ishihara et al. (1997), we first discuss global convergence theorems for the improved SOR-Newton and block SOR-Newton methods with orderings applied to a system of mildly nonlinear equations, which includes as a special case the discretized version of the Dirichlet problem, for the equation ϵΔu + p(x)ux + q(y)uy = f(x, y, u), where f is continuously differentiable and fu(x, y, u) ⩾ 0. Moreover, we propose a practical choice of the multiple relaxation parameters {ωi} for them. Numerical examples are also given.  相似文献   

8.
An implicit function theorem   总被引:1,自引:0,他引:1  
Suppose thatF:DR n×RmRn, withF(x 0,y 0)=0. The classical implicit function theorem requires thatF is differentiable with respect tox and moreover that 1 F(x 0,y 0) is nonsingular. We strengthen this theorem by removing the nonsingularity and differentiability requirements and by replacing them with a one-to-one condition onF as a function ofx.  相似文献   

9.
Sufficient conditions are given for the solutions to the (fully nonlinear, degenerate) elliptic equation F(x,u,Du,D2u)=0 in Ω to satisfy |u(x)−u(y)|?Cα|xy| for some α∈(0,1) when xΩ and y∈∂Ω.  相似文献   

10.
11.
In this paper we study the quenching problem for the non-local diffusion equation
ut(x,t) = òW J(x - y)u(y,t)dy + ò\mathbbRN\W J(x - y)dy - u(x,t) - lu - p(x,t) {u_t}(x,t) = \int\limits_\Omega {J(x - y)u(y,t)dy + \int\limits_{{\mathbb{R}^N}\backslash \Omega } {J(x - y)dy - u(x,t) - \lambda {u^{ - p}}(x,t)} }  相似文献   

12.
We study the problem of minimizing ${\int_{\Omega} L(x,u(x),Du(x))\,{\rm d}x}$ over the functions ${u\in W^{1,p}(\Omega)}$ that assume given boundary values ${\phi}$ on ???. We assume that L(x, u, Du)?=?F(Du)?+?G(x, u) and that F is convex. We prove that if ${\phi}$ is continuous and ?? is convex, then any minimum u is continuous on the closure of ??. When ?? is not convex, the result holds true if F(Du)?=?f(|Du|). Moreover, if ${\phi}$ is Lipschitz continuous, then u is H?lder continuous.  相似文献   

13.
14.
We present a nine-point fourth-order finite difference method for the nonlinear second-order elliptic differential equation Auxx + Buyy = f(x, y, u, ux, uy) on a rectangular region R subject to Dirichlet boundary conditions u(x, y) = g(x, y) on ?R. We establish, under appropriate conditions O(h4)-convergence of the finite difference scheme. Numerical examples are given to illustrate the method and its fourth-order convergence.  相似文献   

15.
We consider weak solutions to the nonlinear boundary value problem (r, (x, u(x)) u′(x))′ = (Fu)′(x) with r(0, u(0)) u′(0) = ku(0), r(L, u(L)) u′(L) = hu(L) and k, h are suitable elements of [0, ∞]. In addition to studying some new boundary conditions, we also relax the constraints on r(x, u) and (Fu)(x). r(x, u) > 0 may have a countable set of jump discontinuities in u and r(x, u)?1?Lq((0, L) × (0, p)). F is an operator from a suitable set of functions to a subset of Lp(0, L) which have nonnegative values. F includes, among others, examples of the form (Fu)(x) = (1 ? H(x ? x0)) u(x0), (Fu)(x) = ∫xLf(y, u(y)) dy where f(y, u) may have a countable set of jump discontinuities in u or F may be chosen so that (Fu)′(x) = ? g(x, u(x)) u′(x) ? q(x) u(x) ? f(x, u(x)) where q is a distributional derivative of an L2(0, L) function.  相似文献   

16.
The problem of determining the initial value u(x, 0) = μ 0(x) in the parabolic equation u t = (k(x)u x (x, t)) x F(x, t) from the final overdetermination μ T (x) = u(x, T) is formulated. It is proved that the Fréchet derivative of the cost functional ${{J(\mu_0) = \|\mu_T(x) - u(x, T)\|_0^2}}$ can be formulated via the solution of the adjoint parabolic problem. Lipschitz continuity of the gradient is proved. The existence of a quasisolution of the considered inverse problem is proved. A monotone iteration scheme is obtained based on the gradient method.  相似文献   

17.
In this paper we consider existence, asymptotic behavior near the boundary and uniqueness of positive solutions to the problem ${\rm div}_x (|\nabla_x u|^{p-2}\nabla_xu)(x,y) + {\rm div}_y (|\nabla_y u|^{q-2}\nabla_y u) (x, y) = u^r(x, y)$ in a bounded domain ${\Omega \subset \mathbb{R}^N \times \mathbb{R}^M}In this paper we consider existence, asymptotic behavior near the boundary and uniqueness of positive solutions to the problem
divx (|?x u|p-2?xu)(x,y) + divy (|?y u|q-2?y u) (x, y) = ur(x, y){\rm div}_x (|\nabla_x u|^{p-2}\nabla_xu)(x,y) + {\rm div}_y (|\nabla_y u|^{q-2}\nabla_y u) (x, y) = u^r(x, y)  相似文献   

18.
In this paper, we investigate the action of the pseudogroup of all point transformations on the bundle of equations y″=u 0(x,y)+u 1(x,y)y′+u 2(x,y)(y′)2+u 3(x,y)(y′)3. We calculate the 1st nontrivial differential invariant of this action. It is a horizontal differential 2-form with values in some algebra, it is defined on the bundle of 2-jets of sections of the bundle under consideration. We prove that this form is a unique obstruction to linearizability of these equations by point transformations.  相似文献   

19.
A wide class of the operator equations F(u)=h in a Hilbert space is studied. Convergence of a Dynamical Systems Method (DSM), based on the continuous analog of the Newton method, is proved without any smoothness assumptions on the F??(u). It is assumed that F??(u) depends on u continuously. Existence and uniqueness of the solution to evolution equation $\dot{u}(t)=-[F'(u(t))]^{-1}(F(u(t))-h)$ , u(0)=u 0, is proved without assuming that F??(u) satisfies the Lipschitz condition. The method of the proof is new. This method is based on a novel version of the abstract inverse function theorem.  相似文献   

20.
We find new necessary conditions for the estimate ${||u||_{L^{q}_{t} (\mathbb{R}; L^{r}_{x} (\mathbb{R}^{n}))} \lesssim\,||F||_{L^{{\tilde{q}}^{\prime}}_{t}(\mathbb{R};L^{{\tilde{r}}^{\prime}}_{x}(\mathbb{R}^{n}))}}$ , where uu(t, x) is the solution to the Cauchy problem associated with the free inhomogeneous Schrödinger equation with identically zero initial data and inhomogeneity FF(t, x).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号