首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An unnatural amino acid, L-3-(2-naphthyl)alanine, has been site-specifically incorporated into proteins in Escherichia coli. An orthogonal aminoacyl-tRNA synthetase was evolved that uniquely aminoacylates the unnatural amino acid onto an orthogonal amber suppressor tRNA, which delivers the acylated amino acid in response to an amber nonsense codon with translational fidelity greater than 99%. This result, together with the in vivo site-specific incorporation of O-methyl-L-tyrosine reported previously, demonstrate that this methodology may be applicable to a host of amino acids. The expansion of the genetic code to include amino acids beyond the common 20 would provide an opportunity to better understand and possibly enhance protein (and perhaps organismal) function.  相似文献   

3.
The ability to incorporate unnatural amino acids into proteins directly in living cells will provide new tools to study protein and cellular function, and may generate proteins or even organisms with enhanced properties. Due to the limited promiscuity of some synthetases, natural amino acids can be substituted with close analogs at multiple sites using auxotrophic strains. Alternatively, this can be achieved by deactivating the editing function of some synthetases. The addition of new amino acids to the genetic code, however, requires additional components of the protein biosynthetic machinery including a novel tRNA-codon pair, an aminoacyl-tRNA synthetase, and an amino acid. This new set of components functions orthogonally to the counterparts of the common 20 amino acids, i.e., the orthogonal synthetase (and only this synthetase) aminoacylates the orthogonal tRNA (and only this tRNA) with the unnatural amino acid only, and the resulting acylated tRNA inserts the unnatural amino acid only in response to the unique codon. Using this strategy, the genetic code of Escherichia coli has been expanded to incorporate unnatural amino acids with a fidelity rivaling that of natural amino acids. This methodology is being applied to other cell types and unnatural analogs with a variety of functionalities.  相似文献   

4.
Although chemists can synthesize virtually any small organic molecule, our ability to rationally manipulate the structures of proteins is quite limited, despite their involvement in virtually every life process. For most proteins, modifications are largely restricted to substitutions among the common 20 amino acids. Herein we describe recent advances that make it possible to add new building blocks to the genetic codes of both prokaryotic and eukaryotic organisms. Over 30 novel amino acids have been genetically encoded in response to unique triplet and quadruplet codons including fluorescent, photoreactive, and redox-active amino acids, glycosylated amino acids, and amino acids with keto, azido, acetylenic, and heavy-atom-containing side chains. By removing the limitations imposed by the existing 20 amino acid code, it should be possible to generate proteins and perhaps entire organisms with new or enhanced properties.  相似文献   

5.
A mutant yeast phenylalanine transfer RNA (ytRNAPheAAA) containing a modified (AAA) anticodon was generated to explore the feasibility of breaking the degeneracy of the genetic code in Escherichia coli. By using an E. coli strain co-transformed with ytRNAPheAAA and a mutant yeast phenylalanyl-tRNA synthetase, we demonstrate efficient replacement of phenylalanine (Phe) by L-3-(2-naphthyl)alanine (Nal) at UUU, but not at UUC codons.  相似文献   

6.
The genetic code of cells is near-universally triplet, and since many ribosomal mutations are lethal, changing the cellular ribosome to read nontriplet codes is challenging. Herein we review work on the incorporation of unnatural amino acids into proteins in response to quadruplet codons, and the creation of an orthogonal translation system in the cell that uses an evolved orthogonal ribosome to efficiently direct the incorporation of unnatural amino acids in response to quadruplet codons. Using this system multiple distinct unnatural amino acids have been incorporated and used to genetically program emergent properties into recombinant proteins. Extension of approaches to incorporate multiple unnatural amino acids may allow the combinatorial biosynthesis of materials and therapeutics, and drive investigations into whether life with additional genetically encoded polymers can evolve to perform functions that natural biological systems cannot.  相似文献   

7.
Genetic code expansion, for the site-specific incorporation of unnatural amino acids into proteins, is currently limited to cultured cells and unicellular organisms. Here we expand the genetic code of a multicellular animal, the nematode Caenorhabditis elegans.  相似文献   

8.
The unnatural amino acid p-nitrophenylalanine (pNO2-Phe) was genetically introduced into proteins in Escherichia coli in response to the amber nonsense codon with high fidelity and efficiency by means of an evolved tRNA/aminoacyl-tRNA synthetase pair from Methanocuccus jannaschii. It was shown that pNO2-Phe efficiently quenches the intrinsic fluorescence of Trp in a distance-dependent manner in a model GCN4 basic region leucine zipper (bZIP) protein. Thus, the pNO2-Phe/Trp pair should be a useful biophysical probe of protein structure and function.  相似文献   

9.
Here, we report a simple and economical tRNA aminoacylation system based upon a resin-immobilized ribozyme, referred to as Flexiresin. This catalytic system features a broad spectrum of activities toward various phenylalanine (Phe) analogs and suppressor tRNAs. Most importantly, it allows users to perform the tRNA aminoacylation reaction and isolate the aminoacylated tRNAs in a few hours. We coupled the Flexiresin system with a high-performance cell-free translation system and demonstrated protein mutagenesis with seven different Phe analogs in parallel. Thus, the technology developed herein provides a new tool that significantly simplifies the procedures for the synthesis of aminoacyl-tRNAs charged with nonnatural amino acids, which makes the nonnatural amino acid mutagenesis of proteins more user accessible.  相似文献   

10.
Using a novel genetic selection, we have identified a series of mutants of the E. coli tyrosyl-tRNA synthetase that selectively charge an amber suppressor tRNA with p-(propargyloxy)phenylalanine and p-azidophenylalanine in yeast. These evolved tRNA-synthetase pairs can be used to site-specifically label proteins with functional groups orthogonal to normal biological chemistries. As an example, we have shown that proteins containing these amino acids can be efficiently bioconjugated with small organic molecules by a [3 + 2] cycloaddition reaction that is mild enough for the manipulation of biological samples.  相似文献   

11.
We investigated the effect of UVB light (290 < or = lambda < or = 320 nm) on the structure and enzymatic activities of Escherichia coli Fpg protein (2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine-DNA glycosylase), a DNA repair enzyme containing a zinc finger motif and five chromophoric Trp residues. Irradiation with UVB light of air-saturated pH 7.4 buffered aqueous solutions of Fpg induces the formation of polymers as shown by sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis. In argon-saturated solutions, polymer formation produces a precipitate. The polymerization quantum yield is 0.07 +/- 0.01 and 0.15 +/- 0.02 in air- and argon-saturated solutions, respectively. In the polymerized Fpg protein, second-derivative absorption spectroscopy indicates that three and one Trp residues are destroyed in air- and argon-saturated solutions, respectively. Polymers are devoid of all three activities of the Fpg protein, whereas the unpolymerized protein retains full activities. Matrix-assisted laser desorption/ionization experiments demonstrate that polymer formation is accompanied by the formation of short polypeptides containing the first 32 or 33 residues of the N-terminal domain. Theses polypeptides are most probably formed by the photolytic cleavage of Fpg protein induced by light absorption by the adjacent Trp-34 residue.  相似文献   

12.
13.
14.
Codon-specific incorporation of noncoded amino acids into proteins can diversify the genetic code. Now, in both E. coli and S. cerevisiae, iterative rounds of selection can be used to isolate aminoacyl-tRNA synthetases that aminoacylate suppressor tRNAs with noncoded amino acids.  相似文献   

15.

Background

A novel fluorescent cAMP analog (8-[Pharos-575]- adenosine-3', 5'-cyclic monophosphate) was characterized with respect to its spectral properties, its ability to bind to and activate three main isoenzymes of the cAMP-dependent protein kinase (PKA-Iα, PKA-IIα, PKA-IIβ) in vitro, its stability towards phosphodiesterase and its ability to permeate into cultured eukaryotic cells using resonance energy transfer based indicators, and conventional fluorescence imaging.

Results

The Pharos fluorophore is characterized by a Stokes shift of 42 nm with an absorption maximum at 575 nm and the emission peaking at 617 nm. The quantum yield is 30%. Incubation of the compound to RIIα and RIIβ subunits increases the amplitude of excitation and absorption maxima significantly; no major change was observed with RIα. In vitro binding of the compound to RIα subunit and activation of the PKA-Iα holoenzyme was essentially equivalent to cAMP; RII subunits bound the fluorescent analog up to ten times less efficiently, resulting in about two times reduced apparent activation constants of the holoenzymes compared to cAMP. The cellular uptake of the fluorescent analog was investigated by cAMP indicators. It was estimated that about 7 μM of the fluorescent cAMP analog is available to the indicator after one hour of incubation and that about 600 μM of the compound had to be added to intact cells to half-maximally dissociate a PKA type IIα sensor.

Conclusion

The novel analog combines good membrane permeability- comparable to 8-Br-cAMP – with superior spectral properties of a modern, red-shifted fluorophore. GFP-tagged regulatory subunits of PKA and the analog co-localized. Furthermore, it is a potent, PDE-resistant activator of PKA-I and -II, suitable for in vitro applications and spatial distribution evaluations in living cells.  相似文献   

16.
Genetic information is encoded by, but potentially not limited to, a four-letter alphabet. A variety of predominantly hydrophobic nucleobase analogues that form self-pairs in DNA have been examined as third base pair candidates. For example, the PICS self-pair is both stable in duplex DNA and synthesized by some wild-type polymerases with reasonable efficiency. These efforts to expand the genetic code are expected to be facilitated by optimizing both the unnatural nucleobase analogues and the polymerases that replicate them. Here, we report the use of an activity-based selection system to evolve a DNA polymerase that more efficiently replicates DNA containing the PICS self-pair. The selection system is based on the co-display on phage of DNA polymerase libraries and a DNA substrate containing the self-pair. Only polymerases that accept the unnatural substrate incorporate a biotin-dUTP to the attached primer and may then be isolated on a streptavidin solid support. A mutant of Sf polymerase, P2, was evolved which both inserts dPICSTP opposite dPICS in the template and extends the unnatural primer terminus by incorporation of the next correct natural dNTP, where the parental enzyme catalyzes neither step at detectable rates. P2 was found to be a triple mutant of Sf, with the mutations F598I, I614F, and Q489H. The evolved properties of P2, as well as the observed mutations, are consistent with an increased affinity for the DNA primer-template containing the self-pair.  相似文献   

17.
Expanding the eukaryotic genetic code to include unnatural amino acids with novel properties would provide powerful tools for manipulating protein function in eukaryotic cells. Toward this goal, a general approach with potential for isolating aminoacyl-tRNA synthetases that incorporate unnatural amino acids with high fidelity into proteins in Saccharomyces cerevisiae is described. The method is based on activation of GAL4-responsive HIS3, URA3, or lacZ reporter genes by suppression of amber codons in GAL4. The optimization of GAL4 reporters is described, and the positive and negative selection of active Escherichia coli tyrosyl-tRNA synthetase (EcTyrRS)/tRNA(CUA) is demonstrated. Importantly, both selections can be performed on a single cell and with a range of stringencies. This method will facilitate the isolation of a range of aminoacyl-tRNA synthetase (aaRS)/tRNA(CUA) activities from large libraries of mutant synthetases.  相似文献   

18.
19.
《Chemistry & biology》1998,5(9):R215-R220
Theories about the origin of the genetic code require specific recognition between nucleic acids and amino acids at some stage of the code's evolution. A statistical analysis of arginine-binding RNA aptamers now offers the opportunity to test such interactions and provides the strongest support for an intrinsic affinity between any amino acid and its codons.  相似文献   

20.
Whole cell bacteria have been entrapped within sol-gel silica matrices in order to perform bio-catalytic experiments. Escherichia coli have been chosen as a model for sol-gel encapsulation. Transmission electron microscopy shows that bacteria are randomly dispersed within the silica matrix and that their cellular organization is preserved. The -galactosidase activity of entrapped E. coli was studied using p-NPG as a substrate. The formation of p-nitrophenol was followed by optical absorption. These experiments show that E. coli still exhibit noticeable enzymatic activity after encapsulation in wet gels. They follow the well known Michaelis-Menten kinetic law but their activity decreases in dried xerogels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号