首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Electrical resistivity ρ and Hal coefficient R are measured as a function of the temperature (T = 1.7−310 K) and the magnetic field (up to H = 28 kOe) in zero-gap semiconductor CuFeS2 samples subjected to hydrostatic compression and under various heat-treatment conditions. At low temperatures, anomalies are observed in the kinetic effects related to the presence of ferromagnetic clusters: the magnetoresistance at T = 4.2 K and T = 20.4 K acquires a hysteretic character and thermopower α changes its sign at T < 15 K. The temperature dependence of conduction-electron concentration n in CuFeS2 has a power form in the temperature range T = 14−300 K, which is characteristic of the intrinsic conductivity in zero-gap semiconductors. In CuFeS2, we have n(T) ∝ T 1.2; in isoelectron compound Cu1.13Fe1.22Te2, we have n(T) ∝ T 1.93. Heat treatment is found to affect the intrinsic conductivity of CuFeS2, as the action of hydrostatic compression (carrier concentration changes); that is, the carrier concentration changes. However, a power form of the n(T) and ρ(T) dependences is retained.  相似文献   

2.
We have ground bulk samples to obtain nanoparticles of (Ga2S3)1–x (Eu2O3) x solid solutions, the sizes of which were determined using an atomic force microscope. The photoluminescence spectra of the nanoparticles were studied in the temperature interval 77–300 K. We have established the mechanisms for emission and transfer of energy from the matrix to the rare-earth ion, and we determined the Stokes shift (ΔS = 0.7 eV), the Huang–Rhys parameter (S = 16), and the optical phonon energy (ħ−ω = 23 meV).  相似文献   

3.
The magnetocaloric effect ΔT has been studied by a direct method in two samples of the manganite Sm0.55Sr0.45MnO3, namely, a single crystal (sample A) and a ceramic sample (sample C). The temperature dependences of the ΔT effect of both samples exhibit a maximum at T max = 143.3 K for the sample A and T max = 143 K for the sample C. In these maxima, the values of the ΔT effect are 0.8 and 0.4 K in the magnetic field H = 14.2 kOe for the samples A and C, respectively. In addition, the ΔT(T) curve of the sample A has a minimum at T min = 120 K, in which ΔT = −0.1 K. The maximum value of the ΔT effect increases with an increase in the magnetic field H in the range of magnetic fields up to 14.2 kOe, and the rate of this increase at H > 8 kOe is higher than that at H < 8 kOe. These features of the ΔT effect are explained by the presence of ferromagnetic and antiferromagnetic A- and CE-type clusters in the samples.  相似文献   

4.
We report measurements of the temperature dependence of the electrical resistivity, ρ(T), and magnetic pen-etration depth, λ(T), for polycrystalline samples of Eu0.5K0.5Fe2As2 with T c = 31 K. ρ(T) follows a linear temperature dependence above T c and bends over to a weaker temperature dependence around 150 K. The magnetic penetration depth, determined by radio frequency technique displays an unusual minimum around 4 K which is associated with short-range ordering of localized Eu3+ moments. The article is published in the original.  相似文献   

5.
The temperatureT dependencies ρ(T) of normal state electric resistivitiesρ c (axial) andρ ab (in plane) of single-layer high-T c superconductors show common trends: AsT is raised, the resistivity first drops steeply before it starts rising αT above an apparent semiconductor-to-metal crossoverT cross . To analyze ρ(T) we plottT/ρ againstT at various dopingsx for bothρ c andρ ab .T/ρ is inversely proportional to the traversal time across a potential barrier as an ionic particle drifts in an electric field. We findT/ρ in good agreement with theT dependence of the quantum rate of migrating particles: AsT is raised, a zero-point rate at the lowestT is extended to a nearly flat plateau before a thermally activated branch sets in. We also find evidence for the admixture of 1- & 2-phonon absorptions below the Arrhenius range. These features shape the semiconductor-like branch below T cross . AboveT cross a metallic-like branch sets in, its αT character deriving from the field coupling of the migrating particle. Our analysis suggests that metal physics may not suffice if ionic features play a role in transport. We attribute our conclusions to the drift of strong-coupling polarons along Cu−O bonds. These “bond polarons” originate from carrier scattering by double-well potentials associated with the bonds. A bond polaron dissociates to a free hole as it passes onto a neighboring O-O link.  相似文献   

6.
The temperature dependences of the electrical conductivity and the permittivity of TlInSe2 and TlGaTe2 crystals unirradiated and irradiated with 4-MeV electrons at a doze of 1016 cm−2 have been investigated. It has been established that electron irradiation leads to a decrease in the electrical conductivity σ and the permittivity ɛ over the entire temperature range under study (90–320 K). It has been revealed that the TlInSe2 and TlGaTe2 single crystals undergo a sequence of phase transitions characteristic of crystals of this type, which manifest themselves as anomalies in the temperature dependences σ = f(T) and ɛ = f(T). Electron irradiation at a doze of 1016 cm−2 does not affect the phase transition temperatures of the crystals under investigation.  相似文献   

7.
We present an estimate of the cross-section for the exclusive production of a ρL 0-meson pair in e+e- scattering, which will be studied in the future high-energy International Linear Collider. For this aim, we complete calculations of the Born order approximation of the amplitudes γ* L,T(Q1 2* L,T(Q2 2)→ρL 0ρL 0, for arbitrary polarization of virtual photons and longitudinally polarized mesons, in the kinematical region s≫-t,Q1 2,Q2 2. These processes are completely calculable in the hard region Q1 2,Q2 2≫Λ2 QCD, and we perform most of the calculations in an analytical way. The resulting cross-section turns out to be large enough for this process to be measurable with foreseen luminosity and energy, for Q1 2 and Q2 2 in the range of a few GeV2.  相似文献   

8.
The heavy-fermion metal CePd1−x Rh x can be tuned from ferromagnetism at x = 0 to the nonmagnetic state at some critical concentration x c . The non-Fermi liquid behavior (NFL) at xx c is recognized by the power-law dependence of the specific heat C(T) given by the electronic contribution susceptibility X(T) and volume expansion coefficient α(T) at low temperatures: C/TX(T) ∝ α(T)/T∝ 1/ √T. We also demonstrate that the behavior of the normalized effective mass M N * observed in CePd1−x Rh x at x ≃ 0.8 agrees with that of M N * observed in paramagnetic CeRu2Si2 and conclude that these alloys exhibit the universal NFL thermodynamic behavior at their quantum critical points. We show that the NFL behavior of CePd1−x Rh x can be accounted for within the frameworks of the quasiparticle picture and fermion condensation quantum phase transition, while this alloy exhibits a universal thermodynamic NFL behavior that is independent of the characteristic features of the given alloy such as its lattice structure, magnetic ground state, dimension, etc. The text was submitted by the authors in English.  相似文献   

9.
The results of infrared reflectivity measurements for the iron-based high-temperature superconductor Ba(Fe0.9Co0.1)2As2 are reported. The reflectivity is found to be close to unity at frequencies ω lower than 2Δ/h (2Δ is the superconducting gap and h is Planck’s constant). This is evidence for the s +/− or s +/+ symmetry of the superconducting order parameter in the studied compound. The infrared reflectivity spectra of Ba(Fe0.9Co0.1)2As2 manifest opening of several superconducting gaps at temperatures lower than critical T c .  相似文献   

10.
The three thermo-optic coefficients of the biaxial laser host KLu(WO4)2 are measured at 633 nm by a deflection method. Their values at 300 K amount to n g / T=−7.4×10−6 K−1; n m / T=−1.6×10−6 K−1 and n p / T=−10.8×10−6 K−1. Nearly athermal propagation directions are found for polarizations along the N m and N p dielectric axes.  相似文献   

11.
The Raman spectra of the (GaN)129, (SiO2)86, and (GaN)54(SiO2)50 nanoparticles were calculated using the molecular dynamics method. The spectrum of (SiO2)86 had three broad bands only, whereas the Raman spectrum of (GaN)129 contained a large number of overlapping bands. The form of the Raman spectrum of (GaN)54(SiO2)50 was determined by the arrangement of the GaN and SiO2 components in it. The nanoparticle with a GaN nucleus had a continuous fairly smooth spectrum over the frequency range 0 ≤ ω ≤ 600 cm−1, whereas the spectrum of the nanoparticle with a SiO2 nucleus contained well-defined bands caused by vibrations of groups of atoms of different kinds and atoms of the same kind.  相似文献   

12.
The magnetotransport and magnetoresistive (MR) properties of manganese-based La0.67Ca0.33MnO3 perovskite with different grain sizes are reported. The electrical resistivity was measured as a function of temperature in magnetic fields of 0.5 and 1 T. The insulator–metal transition temperature, T IM, shifted to a higher temperature with the application of the magnetic field. In zero field, T IM is almost constant (∼271 K) for all samples except for the sample with the largest grain size, where T IM=265 K. The temperature dependence of resistivity was fitted with several equations in the metallic (ferromagnetic) region and the insulating (paramagnetic) region. The density of states at the Fermi level, N(E F), and the activation energy of electron hopping were estimated by fitting the resistivity versus temperature curves. The ρT 2 curves are nearly linear in the metallic regime, but the ρT 2.5 curves exhibit a deviation from linearity. The variable range hopping model and small polaron hopping model fit the data well in the high-temperature region, indicating the existence of the Jahn–Teller distortion that localizes the charge carriers. MR was found to increase with an increase in the magnetic field, an effect which is attributed to the intergrain spin tunneling effect.  相似文献   

13.
New perovskite solid solution ceramics of (1−x)BaTiO3-xBi(Mg1/2Ti1/2)O3 ((1−x)BT-xBMT, x≤0.09) were synthesized by the solid-state reaction technique. X-ray diffraction studies have revealed a stable single perovskite structure for all samples. Dielectric measurements were carried out at different frequencies and temperatures. The polarization evolutions with temperatures were measured to investigate the ferroelectric properties. All the compositions show features of ferroelectrics with diffuse phase transition, though the temperature T m of their dielectric constant maximum ε m is frequency dependent. The dielectric constant peak ε(T) of (1−x)BT-xBMT ceramics become broad with increasing BMT content. During the temperature range of ε(T) peak summit, (1−x)BT-xBMT ceramics present quasi-linear dielectric phenomenon under high electric field with very high dielectric constant.  相似文献   

14.
The dependences of the electrical resistivity ρ and the Hall coefficient R on the magnetic field have been measured for single-crystal samples of the n-Bi0.93Sb0.07 semiconductor alloys with electron concentrations in the range 1 × 1016 cm−3 < n < 2 × 1018 cm−3. It has been found that the measured dependences exhibit Shubnikov-de Haas quantum oscillations. The magnetic fields corresponding to the maxima of the quantum oscillations of the electrical resistivity are in good agreement with the calculated values of the magnetic fields in which the Landau quantum level with the number N intersects the Fermi level. The quantum oscillations of the Hall coefficient with small numbers are characterized by a significant spin splitting. In a magnetic field directed along the trigonal axis, the quantum oscillations of the resistivity ρ and the Hall coefficient R are associated with electrons of the three-valley semiconductor and are in phase with the magnetic field. In the case of a magnetic field directed parallel to the binary axis, the quantum oscillations associated both with electrons of the secondary ellipsoids in weaker magnetic fields and with electrons of the main ellipsoid in strong magnetic fields (after the overflow of electrons from the secondary ellipsoids to the main ellipsoid) are also in phase. In magnetic fields of the quantum limit ħω c /2 ≥ E F, the electrical conductivity increases with an increase in the magnetic field: σ22(H) ∼ H k . A theoretical evaluation of the exponent in this expression for a nonparabolic semiconductor leads to values of k close to the experimental values in the range 4 ≤ k ≤ 4.6, which were obtained for samples of the semiconductor alloys with different electron concentrations. A further increase in the magnetic field results in a decrease of the exponent k and in the transition to the inequality σ22(H) ≤ σ21(H).  相似文献   

15.
Resonance modes that are due to magnetic excitations in the exchange-coupled subsystems of rare-earth ions (R = Nd3+, Sm3+, and Gd3+) and Fe3+ ions have been detected in submillimeter transmission spectra (0.1–0.6 THz) of RFe3(BO3)4 iron borate-multiferroic single crystals. The strong interaction between spin oscillations of the Fe and R subsystems has been revealed, which determines the behavior of the modes depending on the anisotropy of the exchange splitting of the ground doublet of the R ion. It has been shown that the intensities of coupled modes (contributions to the magnetic permeability) depend strongly on the difference between the g factors of Fe and R ions. This dependence makes it possible to determine the sign of the latter g factor. In particular, a noticeable intensity of exchange Nd modes in NdFe3(BO3)4 is due to an increase in their contribution at g ⊥, ‖Nd < 0, while in GdFe3(BO3)4 with g Gdg Fe ≈ 2, the Fe and Gd contributions compensate each other and the exchange (Gd) mode is not observed. In spite of the weak interaction of Sm ions with the magnetic field, SmFe3(BO3)4 exhibits resonance modes, which are attributed to the excitation of Sm ions through the Fe subsystem.  相似文献   

16.
Corrections of order α 5 and α 6 to the hyperfine structure of S- and P-wave energy levels of the muonic-helium ion are calculated. Electron-vacuum-polarization effects, corrections for the nuclear structure, and recoil effects are taken into account. The numerical values obtained for respective hyperfine splitting, −1334.73 meV (1S), −166.64 meV (2S), −58 712.90 μeV (2P 1/2), and −24 290.69 μeV (2P 3/2), can be viewed as a reliable estimate for a comparison with experimental data, and the hyperfine-structure interval of Δ12 = 8ΔE hfs(2S) − ΔE hfs(1S) = 1.59 meV can be used to test QED predictions.  相似文献   

17.
Early work on the iron-arsenide compounds supported the view, that a reduced dimensionality might be a necessary prerequisite for high-T c superconductivity. Later, however, it was found that the zero-temperature upper critical magnetic field, H c2(0), for the 122 iron pnictides is in fact rather isotropic. Here, we report measurements of the temperature dependence of the electrical resistivity, ρ(T), in Ba0.5K0.5Fe2As2 and Ba0.68K0.32Fe2As2 single crystals in zero magnetic field and in Ba0.68K0.32Fe2As2 in static and pulsed magnetic fields up to 60 T. We find that the resistivity of both compounds in zero field is well described by an exponential term due to inter-sheet umklapp electron-phonon scattering between light electrons around the M point to heavy hole sheets at the Γ point in reciprocal space. From our data, we construct an H-T phase diagram for the inter-plane (H | c) and in-plane (H | ab) directions for Ba0.68K0.32Fe2As2. Contrary to published data for 122 underdoped FeAs compounds, we find that H c2(T) is in fact anisotropic in optimally doped samples down to low temperatures. The anisotropy parameter, γ = H c2 ab /H c2 c , is about 2.2 at T c . For both field orientations we find a concave curvature of the H c2 lines with decreasing anisotropy and saturation towards lower temperature. Taking into account Pauli spin paramagnetism, we perfectly can describe H c2 and its anisotropy.  相似文献   

18.
We report transport, magnetic and thermodynamic properties of the skutterudite compound LaFe4Sb12. The basic features are a large magnetic susceptibility χ(T), and large electronic coefficient γ of the heat capacity. In particular, a T1.35, T1.7, and T-2/3 temperature dependence of the magnetic susceptibility χ(T), resistivity ρ(T), and Grüneisen parameter Γ(T), respectively, is found at low temperature. An overall understanding of these physical properties is achieved, assuming that LaFe4Sb12 is a non-Fermi liquid system close to a ferromagnetic quantum critical point, with a spin fluctuation temperature Tsf=50±15 K.  相似文献   

19.
We report synthesis, structure/micro-structure, resistivity under magnetic field [ρ(T)H], Raman spectra, thermoelectric power S(T), thermal conductivity κ(T), and magnetization of ambient pressure argon annealed polycrystalline bulk samples of MgB2, processed under identical conditions. The compound crystallizes in hexagonal structure with space group P6/mmm. Transmission electron microscopy (TEM) reveals electron micrographs showing various types of defect features along with the presence of 3–4 nm thick amorphous layers forming the grain boundaries of otherwise crystalline MgB2. Raman spectra of the compound at room temperature exhibited characteristic phonon peak at 600 cm-1. Superconductivity is observed at 37.2 K by magnetic susceptibility χ(T), resistivity ρ(T), thermoelectric power S(T), and thermal conductivity κ(T) measurements. The power law fitting of ρ(T) give rise to Debye temperature (ΘD) at 1400 K which is found consistent with the theoretical fitting of S(T), exhibiting Θ D of 1410 K and carrier density of 3.81 × 1028/m3. Thermal conductivity κ(T) shows a jump at 38 K, i.e., at Tc, which was missing in some earlier reports. Critical current density (Jc) of up to 105 A/cm2 in 1–2 T (Tesla) fields at temperatures (T) of up to 10 K is seen from magnetization measurements. The irreversibility field, defined as the field related to merging of M(H) loops is found to be 78, 68 and 42 kOe at 4, 10 and 20 K respectively. The superconducting performance parameters viz. irreversibility field (Hirr) and critical current density Jc(H) of the studied MgB2 are improved profoundly with addition of nano-SiC and nano-diamond. The physical property parameters measured for polycrystalline MgB2 are compared with earlier reports and a consolidated insight of various physical properties is presented.  相似文献   

20.
The electrical properties of a lithium heptagermanate (Li2Ge7O15) crystal have been studied in DC and AC measuring fields at temperatures from 500 to 700 K. In a DC field, a substantial decrease of electrical conductivity σ with time has been detected. On the basis of kinetic dependences σ(t), estimates of the charge carrier diffusion coefficient D have been obtained. In the frequency range 101–105 Hz, the spectra of complex impedance ρ*(f) have been measured. The analysis of diagrams in the complex plane (ρ″–ρ′) has been performed within the equivalent circuit approach. It has been shown that, in the considered temperature and frequency intervals, the electrical properties of Li2Ge7O15 crystals have been determined by the hopping conduction of interstitial lithium ions A Li and accumulation of charge carriers near the blocking Pt electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号