首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A rotating ball interface for surface‐assisted laser desorption/ionization (SALDI) mass spectrometry was designed and tested. One side of the ball was exposed to atmospheric pressure and the other to the vacuum in a time‐of‐flight mass spectrometer. Analytes (arginine, atenolol, reserpine, tofisopam, and chloropyramine) were applied using electrospray to a silicon substrate on the atmospheric side, the ball was rotated 180°, and the analyte was desorbed on the vacuum side using a pulsed, 200 Hz, 355 nm laser. In order to increase the desorption area, the laser focus was scanned over the substrate in a raster pattern repeated once every second. The design allows for rapid sample throughout with a sample turn‐around time as short as 5 s. Newly produced porous silicon substrates initially yielded very low ion signals, and they required several hundred laser shots to attain maximum sensitivity. In contrast, amorphous silicon did not require such ‘activation’. Quantitative analysis showed a sample‐to‐sample reproducibility of about 10%. The sensitivities with model analytes were in the 1000 to 10 000 ions/fmole range and detection limits in the low fg range. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Charge assisted laser desorption/ionization mass spectrometry of droplets   总被引:1,自引:1,他引:0  
We propose and evaluate a new mechanism to account for analyte ion signal enhancement in ultraviolet-laser desorption mass spectrometry of droplets in the presence of corona ions. Our new insights are based on timing control of corona ion production, laser desorption, and peptide ion extraction achieved by a novel pulsed corona apparatus. We demonstrate that droplet charging rather than gas-phase ion-neutral reactions is the major contributor to analyte ion generation from an electrically isolated droplet. Implications of the new mechanism, termed charge assisted laser desorption/ionization (CALDI), are discussed and contrasted with those of the laser desorption atmospheric pressure chemical ionization method (LD-APCI). It is also demonstrated that analyte ion generation in CALDI occurs with external electric fields about one order of magnitude lower than those needed for atmospheric pressure matrix assisted laser desorption/ionization or electrospray ionization of droplets.  相似文献   

3.
Matrix-assisted laser desorption/ionization (MALDI) mass spectra were obtained from single particles injected directly into a time-of-flight mass spectrometer. Aerosol particles were generated at atmospheric pressure using a piezoelectric single-particle generator or a pneumatic nebulizer and introduced into the mass spectrometer through a series of narrow-bore tubes. Particles were detected by light scattering that was used to trigger a 337 nm pulsed nitrogen laser and the ions produced by laser desorption were mass separated in a two-stage reflectron time-of-flight mass spectrometer. MALDI mass spectra of single particles containing bradykinin, angiotensin II, gramicidin S, vitamin B(12) or gramicidin D were obtained at mass resolutions greater than 400 FWHM. For the piezoelectric particle generator, the efficiency of particle delivery was estimated to be approximately 0.02%, and 50 pmol of sample were consumed for each mass spectrum. For the pneumatic nebulizer, mass spectra could be obtained from single particles containing less than 100 amol of analyte, although the sample consumption for a typical mass spectrum was over 400 pmol.  相似文献   

4.
532 nm纳秒激光电离产生Xez+(z ≤ 11)高价离子   总被引:1,自引:0,他引:1  
利用25 ns脉冲Nd-YAG 532 nm激光,在1011 W•cm-2的光场强度下,研究了Xe原子团簇的激光电离过程,观察到较强的高价离子信号,其中最高价态达+11.不同脉冲束位置和束源压力的实验表明,仅当激光作用于脉冲束中段时才能观察到高价离子,且高价离子信号强度随束源压力的增加而迅速增强,说明束中大尺寸团簇的存在与高价离子的形成密切相关.通过实验,认为高价离子可能来源于电离原子团簇而形成的纳米尺度等离子体小球对激光光场的共振吸收.  相似文献   

5.
The preparation of an artificial superatom consisting of a positive charge inside a superfluid helium nanodroplet and an electron in an orbital surrounding the droplet is of fundamental interest and represents an experimental challenge. In this work, nanodroplets of several thousand helium atoms are doped with single caesium (Cs) atoms. While on the droplet, the Cs valence electron is excited in two steps through an intermediate state into nS, nP, and nD states. The excitation is monitored by laser induced fluorescence or, for high principal quantum numbers, by resonant three-photon-ionization. On-droplet Rydberg excitations are resolved up to about n = 20. The energies are compared with those of free Cs atom Rydberg states and quantum defects as well as the on-droplet ionization threshold are derived.  相似文献   

6.
We report on the coupling of a polymer-based microfluidic chip to a MALDI-TOF MS using a rotating ball interface. The microfluidic chips were fabricated by micromilling a mold insert into a brass plate, which was then used for replicating polymer microparts via hot embossing. Assembly of the chip was accomplished by thermally annealing a cover slip to the embossed substrate to enclose the channels. The linear separation channel was 50 microm wide, 100 microm deep, and possessed an 8 cm effective length separation channel with a double-T injector (V(inj) = 10 nL). The exit of the separation channel was machined to allow direct contact deposition of effluent onto a specially constructed rotating ball inlet to the mass spectrometer. Matrix addition was accomplished in-line on the surface of the ball. The coupling utilized the ball as the cathode transfer electrode to transport sample into the vacuum for desorption with a 355 nm Nd:YAG laser and analyzed on a TOF mass spectrometer. The ball was cleaned online after every rotation. The ability to couple poly(methylmethacrylate) microchip electrophoresis devices for the separation of peptides and peptide fragments produced from a protein digest with subsequent online MALDI MS detection was demonstrated.  相似文献   

7.
Argon gas at a high pressure (~80 bar) has been expanded using a miniaturized pulsed valve at room temperature, producing a supersonic beam of cold, large argon droplets. Atoms of silver are subsequently embedded into the droplet using the pick-up technique. The resulting Ag(n)Ar(droplet) distribution was analyzed using multiphoton laser ionization time-of-flight mass spectrometry. Besides bare metal clusters, snowballs of silver monomers and dimers encapsulated in up to 50 argon atoms have been observed. The influence of the solvent on the optical absorption of the solute was studied for embedded Ag(8) using resonant two-photon ionization in the ultraviolet. A redshift and broadening of the Ag(8)Ar(droplet) optical spectrum compared to that measured in pure [Federmann et al., Eur. Phys. J. D 1999, 9, 11] and Ar-doped helium droplets [Diederich et al., J. Chem. Phys.2002, 116, 3263] was observed, which is attributed to the interaction with the larger Ar matrix environment.  相似文献   

8.
Charged droplet processing methodology, that utilizes electrodynamic levitation technology to control the trajectories of picoliter volume charged droplets and deliver them to a target plate at atmospheric pressure, has been developed. Termed wall-less sample preparation (WaSP), this methodology offers several features that could prove beneficial to the preparation of sample spots from separation column effluents for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. These features include solute pre-concentration factors of 10(1) to 10(3) due to volatile solvent evaporation prior to droplet deposition onto the target plate, high spatial accuracy of the deposition position of each processed droplet (+/-5 microm), and the ability to prepare sample spots as small as 20 microm in diameter from a single droplet. Here a new mode of operation of this methodology is described and used as an offline post-column pre-concentrating interface between capillary liquid chromatography (capLC) and a target plate for offline MALDI-MS. Using a fraction from the capLC separation of peptides produced by the proteolytic digestion of the protein cytidine 5'-triphosphate:phosphocholine cytidylyltransferase, MALDI sample spots were prepared using the dried-droplet method, direct piezoelectric droplet dispensing, and the processing of piezo-dispensed droplets by WaSP. The sample spot morphology was investigated using light microscopy, and peptide ion abundances produced by MALDI were measured using time-of-flight (TOF) MS. The advantages of developing an online capLC/WaSP interface with MALDI-MS in the future are discussed along with some of the challenges that may be encountered in such an endeavor.  相似文献   

9.
Bisphenol A diglycidyl methacrylate (Bis-GMA) was adsorbed onto or covalently bound to a porous silicon oxide surface. Laser desorption 10.5 eV postionization mass spectrometry (LDPI-MS) was previously demonstrated for surface analysis of adsorbed and surface bound Bis-GMA, but signal to noise levels were low and ion fragmentation was extensive. 7.87 eV postionization using the fluorine laser was demonstrated here for Bis-GMA. However, signal levels remained low for LDPI-MS of Bis-GMA as its ionization potential (IP) was only approximately 7.8 eV, near threshold for single photon ionization by the 7.87 eV fluorine laser. It is known that aromatic tagging of molecular analytes can lower the overall IP of the tagged molecular complex, allowing 7.87 eV single photon ionization. Therefore, Bis-GMA was also derivatized with several tags whose IPs were either below or above 7.87 eV: the tag with an IP below 7.87 eV enhanced single photon ionization while the tags with higher IPs did not. However, signal intensities were enhanced by resonant laser desorption for two of the derivatized Bis-GMAs. Intact ions of Bis-GMA and its derivatives were generally observed by 7.87 eV LDPI-MS, consistent with the formation of ions with relatively little internal energy upon threshold single photon ionization.  相似文献   

10.
Continuous rotation of a cholesteric droplet under the heat gradient was observed by Lehmann in 1900. This phenomenon, the so-called Lehmann effect, consists of unidirectional rotation around the heat flux axis. We investigate this gradient heat effect using infrared laser optical tweezers. By applying single trap linearly polarized optical tweezers onto a radial achiral nematic liquid crystal droplet, trapping of the droplet was performed. However, under a linearly polarized optical trap, instead of stable trapping of the droplet with slightly deformed molecular directors along with a radial hedgehog defect, anomalous continuous rotation of the droplet was observed. Under low power laser trapping, the droplet appeared to rotate clockwise. By continuously increasing the laser power, a stable trap was observed, followed by reverse directional rotation in a higher intensity laser trap. Optical levitation of the droplet in the laser beam caused the heat gradient, and a breaking of the symmetry of the achiral nematic droplet. These two effects together led to the rotation of the droplet under linearly polarized laser trapping, with the sense of rotation depending on laser power.  相似文献   

11.
Up to Kr17 + multicharged krypton ions have been observed in time-of-flight mass spectrum by a 25 ns Nd-YAG 1. 064 μm laser at laser intensity about 1012 W/ cm2 . Experimental results indicate that the multicharged ions appear only when the laser interacts with the middle part of the pulsed beam,and the intensities of the multicharged ions increase dramatically by increasing the backing pressure of Kr gas,which indicates that the clusters in the beam is essential to the production of multicharged ions. From the experimental results,it is concluded that the cluster is ionized via multiphoton ionization and forms a nanoplasma ball,which can absorb the laser resonantly to further ionize the single charge ion to the high charge state.  相似文献   

12.
Electrospray droplet impact (EDI)/secondary ion mass spectrometry (SIMS) is a new desorption/ionization technique for mass spectrometry in which highly charged water clusters produced from the atmospheric‐pressure electrospray are accelerated in vacuum by several kV and impact the sample deposited on the metal substrate. In this study, several industrial synthetic polymers, e.g. polystyrene (PS) and polyethylene glycol (PEG) were analyzed by EDI/SIMS mass spectrometry. For higher molecular weight analytes, e.g. PS4000 and PEG4600, EDI/SIMS mass spectra could be obtained when cationization salts are added. For the polymers of lower molecular weights, e.g. PEG300 and PEG600, they could be readily detected as protonated ions without the addition of cationization agents. Anionized PS was also observed in the negative ion mode of operation when acetic acid was added to the charged droplet. Compared to matrix‐assisted laser desorption/ionization (MALDI), ion signal distribution with lower background signals could be obtained particularly for the low‐molecular weight polymers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
We examined the femtosecond nonresonant ionization of organic amines with vertical ionization potentials as low as 5.95 eV. The quantitative evaluation of suppressed ionization relative to the single active electron approximation model was done by comparing the saturation intensity, I(sat), in experiments and theory. ADK theory was found to be useful in predicting the ionization yield in the I(sat) scale within a factor of 2, even for molecules with very low ionization potentials. The degree of suppression was, however, smaller than that of benzene. The localization of electrons on the nitrogen atom was found to affect the ionization behavior under the strong laser field. The delocalized pi electrons in benzene could not follow the laser field adiabatically, while those in localized molecular orbitals could. In addition, the growth of a tunneling barrier due to the screening effect in amines may be relatively smaller than that in benzene.  相似文献   

14.
Multi-photon ionization (MPI) with tunable visible/UV laser light is shown to be a sensitive tool for analysis of traces in gas mixtures when combined with a mass spectrometer. Mass spectra of six different organic molecules, obtained with low intensity laser light, are presented and demonstrate the facility of ionization without fragmentation (soft ionization) under proper experimental conditions. Quantitative values for the cross sections for both two photon steps are obtained from the measured intensity dependence and the absolute ion numbers. Such quantitative data help in the evaluation and definition of this new ionization technique in mass spectrometry. Efficiencies of ionization for some molecules are as high as 25% leading to 106 ions in a single pulse from the dye laser (1 kW). Detectability as low as 2 parts in 109 is thus predicted.  相似文献   

15.
In this paper, a novel suspended droplet microextraction method was developed for the detection of trace of organic compounds in water samples. The process was executed in a rotating extraction vial without the use of a stir bar. A single drop of octan-1-ol placed on top of the water sample was used as the solvent. The droplet remained on top of the water sample as a thin layer with an expanding surface area during the extraction stage, while during the sampling stage, the droplet was collected and sampled by inserting a needle. The volume of the microdroplet used was 3 μL or less, to ensure high organic compound sensitivity. The microextraction experimental setup was simple, utilizing centrifugal forces and possesses the advantages of low cross-contaminant/interference and applicability to water samples apt to emulsification. Nitrobenzene was selected as a model organic compound, and samples were analyzed using gas chromatography (GC) or UV-vis spectrometry. Analysis of the microextraction method results showed a relative standard deviation (RSD) less than 3.82%.  相似文献   

16.
In this paper we present a theoretical and computational study of extreme multielectron ionization (involving the stripping of all the electrons from light, first-row atoms, and the production of heavily charged ions, e.g., Xe(+q) (q< or =36) from heavy atoms) in elemental and molecular clusters of Xe(n),(D(2))(n), and (CD(4))(n) (n=55-1061) in ultraintense (intensity I=10(15)-10(19) W cm(-2)) laser fields. Single atom or molecule multielectron ionization can be adequately described by the semiclassical barrier suppression ionization (BSI) mechanism. Extreme cluster multielectron ionization is distinct from that of a single atomic or molecular species in terms of the mechanisms, the ionization level and the time scales for electron dynamics and for nuclear motion. The novel compound mechanism of cluster multielectron ionization, which applies when the cluster size (radius R(0)) considerably exceeds the barrier distance for the BSI of a single constituent, involves a sequential-parallel, inner-outer ionization. The cluster inner ionization driven by the BSI for the constituents is induced by a composite field consisting of the laser field and inner fields. The energetics and dynamics of the system consisting of high energy (< or =3 keV) electrons and of less, similar 100 keV ions in the laser field was treated by molecular dynamics simulations, which incorporate electron-electron, electron-ion, ion-ion, and charge-laser interactions. High-energy electron dynamics also incorporates relativistic effects and includes magnetic field effects. We treat inner ionization considering inner field ignition, screening and fluctuation contributions as well as small [(< or =13%)] impact ionization contributions. Subsequent to inner ionization a charged nanoplasma is contained within the cluster, whose response to the composite (laser+inner) field results in outer ionization, which can be approximately described by an entire cluster barrier suppression ionization mechanism.  相似文献   

17.
The cavity enhanced Raman scattering spectrum recorded from an aerosol droplet provides a unique fingerprint of droplet radius and refractive index, assuming that the droplet is homogeneous in composition. Aerosol optical tweezers are used in this study to capture a single droplet and a Raman fingerprint is recorded using the trapping laser as the source for the Raman excitation. We report here the retrieval of the real part of the refractive index with an uncertainty of ± 0.0012 (better than ± 0.11%), simultaneously measuring the size of the micrometre sized liquid droplet with a precision of better than 1 nm (< ± 0.05% error). In addition, the equilibrium size of the droplet is shown to depend on the laser irradiance due to optical absorption, which elevates the droplet temperature above that of the ambient gas phase. Modulation of the illuminating laser power leads to a modulation in droplet size as the temperature elevation is altered. By measuring induced size changes of <1 nm, we show that the imaginary part of the refractive index can be retrieved even when less than 10 × 10(-9) with an accuracy of better than ± 0.5 × 10(-9). The combination of these measurements allows the complex refractive index of a droplet to be retrieved with high accuracy, with the possibility of making extremely sensitive optical absorption measurements on aerosol samples and the testing of frequently used mixing rules for treating aerosol optical properties. More generally, this method provides an extremely sensitive approach for measuring refractive indices, particularly under solute supersaturation conditions that cannot be accessed by simple bulk-phase measurements.  相似文献   

18.
The temporal behavior of the laser enhanced ionization signal of mercury was studied in a quartz cell under low buffer gas pressure. Using fast electronics and a short (34 ns) laser pulse, it was possible to distinguish, in one single time-resolved ionization waveform, the non-selective photoionization component of the signal from that which was due to collisional ionization from selected levels. Experimental results were shown to agree with those obtained by computer simulation, and optimal conditions for deconvolution of the two components were studied.  相似文献   

19.
Previously, we introduced wall-less sample preparation (WaSP), technology that involves the use of an electrodynamic balance (EDB) to prepare microm-sized sample spots for analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In that work we demonstrated the detection of femtomole quantities of a low molecular weight peptide and a hydrophobic ester (both <600 Da). Here we use WaSP to test the hypothesis that the use of small sample spot sizes and an instrument equipped with delayed extraction would increase the analytical utility of liquid sample spots for peptide and protein (>2500 Da) analysis by UV-MALDI-TOF-MS (Sze et al.; J. Am. Soc. Mass Spectrom. 1998, 9, 166-174). To aid the optimization of preparing microm-sized sample spots by WaSP, optical microscopy and mass spectrometry were used to investigate nonvolatile solute concentration effects on droplet fission and sample spot size, modifications of the EDB electric field to control droplet ejection, and the use of multiple droplet deposition to increase sample loading. Also described is a rapid deposition mode of operation for WaSP that allows single droplets generated at 1 Hz to be levitated briefly ( approximately 500 ms) before being ejected autonomously and deposited as a concentrated sample spot with a spatial accuracy of +/-5 microm. To test the sensitivity of the method, one hundred glycerol droplets (270 pL each, 27 nL total) each containing 32 amol lysozyme were deposited on top of each other one-at-a-time to create a single sample spot. Using a mass spectrometer equipped with delayed extraction to analyze this sample spot, we verified the hypothesis of Sze et al. by achieving detection limits three orders of magnitude below that previously observed for the detection of a protein by UV-MALDI-TOF-MS with a chemical-doped liquid matrix sample preparation.  相似文献   

20.
Zirconium oxide clusters are generated in the gas phase by laser ablation of the metal into a flow of ca. 5% O2/95% He at 100 psig and supersonic expansion into a vacuum chamber. Mass spectra of neutral gas phase zirconium oxide clusters are obtained through photoionization at three different laser wavelengths: 118, 193, and 355 nm. Ionization of the clusters with 118 nm laser radiation is through a single photon ionization mechanism, while ionization by 193 and 355 nm laser radiation is through a multiphoton (three or more photon) mechanism. Fragment ion features are observed in the mass spectra of ZrmOn+ for only the 193 nm and 355 nm ionization schemes. The true neutral ZrmOn cluster distribution is obtained only through 118 nm single photon ionization, as verified by mass spectral peak linewidths and calculations of the cluster binding energies, ionization energies, and fragmentation rates. The neutral cluster distribution consists mainly of the series ZrmO2m and ZrmO(2m+1) for m = 1,..., approximately 30.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号