首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Glasses with the basic compositions 10Na2O · 10CaO · xAl2O3 · (80 − x)SiO2 (x=0, 5, 15, 25) and 16Na2O · 10CaO · xAl2O3 · (74 − x)SiO2 (x=0, 5, 10, 15, 20) doped with 0.25-0.5 mol% SnO2 were studied using square-wave-voltammetry at temperatures in the range from 1000 to 1600 °C. The voltammograms exhibit a maximum which increases linearly with increasing temperature. With increasing alumina concentration and decreasing Na2O concentration the peak potentials get more negative. Mössbauer spectra showed two signals attributed to Sn2+ and Sn4+. Increasing alumina concentrations did not affect the isomer shift of Sn2+; however, they led to increasing quadrupole splitting, while in the case of Sn4+ both isomer shift and quadrupole splitting increased. A structural model is proposed which explains the effect of the composition on both the peak potentials and the Mössbauer parameters.  相似文献   

3.
Diffusion coefficients of various polyvalent ions (Sn2+, As3+, As5+, Sb3+, Sb5+, Cr3+, Ti4+, V4+, V5+ and Fe3+) were measured in melts with the basic compositions of 10CaO·10 BaO·10Al2O3·70SiO2 and 10CaO·10BaO·15Al2O3·65SiO2 by means of square-wave voltammetry. At temperatures in the range of 1300-1600 °C, linear correlations between logD and 1/T were observed. At 1400 °C, the diffusion coefficients obtained are compared with those obtained from other glass melt compositions.  相似文献   

4.
Solid state 1H, 29Si and 31P MAS NMR have been used to investigate the microstructure of phosphosilicate gels prepared by a modified sol-gel method involving hydrolysis of silicon precursors in a solely aqueous environment at 50 °C. Gels with molar compositions 5, 10, 20 and 30 mol% P2O5 in P2O5-SiO2 were studied. After drying to 400 °C the gels have very similar structures formed by a siloxane framework containing silanol groups and trapped molecules of orthophosphoric acid together with a very small amount, of pyrophosphoric acid. Unlike the gel samples previously synthesized by the hydrolysis of the silicon precursor in alcoholic solution at room temperature, the co-polymerization of phosphorus and silicon is much reduced. Although co-polymerization increases with phosphorus content, it still represents less than 50% of the phosphorus in the 30 mol% P2O5 gel. Furthermore there is no evidence for six-coordinated silicon in the glassy matrix.  相似文献   

5.
The properties and structure of (45 - x)RO · xNa2O · 2.5Al2O3 · 52.5P2O5 (R = Mg, Ca, Sr, Ba, 0 x 31 mol%) glasses were investigated. The variation in the molar volumes of glasses in the MgO series is closely related to the formation of the end groups in the glasses with the substitution of Na+ ions for Mg2+ ions, resulting in a variation of the density and refractive index of the glasses. The properties of glasses containing CaO in terms of Na2O substitution depend mainly on the low field strength of Na+ ions substituting for CaO even though the end groups occurring in the glasses increased. The variation in properties of the glasses containing SrO and BaO, some of which were substituted by Na2O, could be explained by differences in masses, field strength and polarizability between the Na+ ions and the alkaline-earth ions due to a small variation in the structure of the glasses despite Na2O substitution.  相似文献   

6.
Al2O3 and ZrO2 mixtures for gate dielectrics have been investigated as replacements for silicon dioxide aiming to reduce the gate leakage current and reliability in future CMOS devices. Al2O3 and ZrO2 films were deposited by atomic layer chemical vapor deposition (ALCVD) on HF dipped silicon wafers. The growth behavior has been characterized structurally and electrically. ALCVD growth of ZrO2 on a hydrogen terminated silicon surface yields films with deteriorated electrical properties due to the uncontrolled formation of interfacial oxide while decent interfaces are obtained in the case of Al2O3. Another concern with respect to reliability aspects is the relatively low crystallization temperature of amorphous high-k materials deposited by ALCVD. In order to maintain the amorphous structure at high temperatures needed for dopant activation in the source drain regions of CMOS devices, binary Al/Zr compounds and laminated stacks of thin Al2O3 and ZrO2 films were deposited. X-ray diffraction and transmission electron microscope analysis show that the crystallization temperature can be increased dramatically by using a mixed oxide approach. Electrical characterization shows orders of leakage current reduction at 1.1-1.7 nm of equivalent oxide thickness. The permittivity of the deposited films is determined by combining quantum mechanically corrected capacitance voltage measurements with structural analysis by transmission electron microscope, X-ray reflectivity, Rutherford backscattering, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectroscopy. The k-values are discussed with respect to formation of interfacial oxide and possible silicate formation.  相似文献   

7.
Tantalum-doped silica glass was fabricated by the sol-gel process in order to obtain a glass with a high refractive index for optical use. A crack-free, clear glass rod was successfully prepared from a low-density gel and used as the core material for fabricating optical fibers. Transmission loss in the fabricated fibers was high, in the range of 103-104 dB/km, which may be caused by coloration due to the multivalency of tantalum; however, the loss was reduced by nearly one order of magnitude by heat treatment at 800 °C, that is, to 75 dB/km at a wavelength of 0.8 μm.  相似文献   

8.
Transparent glasses composition of which can be expressed by the formula: (100−x) · (K2O · 2TiO2 · P2O5) · x(K2O · 2B2O3 · 7SiO2), where x=5, 10, 15 and 20 mol% (KTP-xKBS), were obtained by melt quenching technique. The structure and crystallization behavior of these glasses have been examined by Fourier transform infrared spectroscopy, differential thermal analysis and X-ray diffraction. In spite of their nominal composition, the studied glasses exhibit a similar oxygen polyhedra distribution. However, significant differences were found in the trigonal BO3 units amount. During DTA runs all the examined glasses devitrify in two steps. In the former, very small crystals of an unknown crystalline phase are produced. In KTP-5KBS and KTP-10KBS glasses anatase phase was also detected. Attempts were made in order to identify the unknown phase (UTP) for which a AB3(XO4)2(OH)6 Crandallite-type structure was proposed where the A, B and X sites were occupied by K, Ti and/or Al, and P, respectively. In the second devitrification step the crystallization of the KTiOPO4 phase occurs while the UTP phase previously formed disappears. Isothermal heat treatments performed at temperature just above Tg have allowed one to obtain transparent crystal-glass nanocomposites, formed by crystalline nanostructure of the UTP phase uniformly dispersed in the amorphous matrix.  相似文献   

9.
A detailed study on a novel TeO2-BaO-SrO-Ta2O5 glass system developed for photonic device applications is reported in this paper. The glass transition and crystallization temperatures could be selected by varying the Ta2O5 content in this glass system. This glass system is found to have good thermal stability among tellurite glasses. Raman spectroscopy has been used as a tool to analyze the structural details of this technologically important glass system. In addition to the TeO4 trigonal bipyramid and TeO3 trigonal pyramid structural units, glasses in this system revealed the presence of an additional Raman band attributed to TaO6 octahedra. The Raman bandwidth of the present glasses are broader compared to the conventional tellurite glasses by 35%. The influence of a gradual addition of the modifier oxides on the coordination geometry of tellurium atoms has been elucidated. Unlike the other tellurite glasses, even at higher modifier concentrations the TeO4 structural units dominate in the glass network compared to TeO3 trigonal pyramids. The ratio of TeO4/TeO3 structural units was discussed for different series of glass compositions.  相似文献   

10.
Koichi Awazu 《Journal of Non》2004,337(3):241-253
The structure of amorphous SiO2 exposed to ArF excimer laser irradiation was examined. Threshold fluence for causing ablation with a single pulse depended on sample preparation: more specifically, 1 J/cm2 for thermally grown SiO2 films on silicon and 2.5 J/cm2 for bulk SiO2. It was found that the bond angle of Si-O-Si was reduced by irradiation near the interface of thermally grown SiO2 films. In contrast, evolution of the bond angle by irradiation was absent in both the bulk SiO2 and SiO2 film-near the top surface, even though the concentration of puckered four-membered rings deduced from Raman spectra dramatically increased. It is assumed that planar three-membered rings were generated in the SiO2 thin layer near the interface, and puckered four-membered rings were generated in the bulk SiO2. The concentration of both the Si3+ and Si2+ structure was increased at a fluence of 800 mJ/cm2 with an increasing number of pulses, although generation of both was absent at higher fluence for a single pulse. The author proposes that the structure of SiO2 is created by flash heating and quenching by pulse laser irradiation. Structural similarities were found between the irradiated SiO2 and SiO2 at high temperatures.  相似文献   

11.
We have studied the structure of partially reduced lead-silicate glasses using combined EXAFS (extended X-ray absorption fine structure) and MD (molecular dynamics) methods. The analysis was performed for glasses of x[(1 − p)Pb pPbO] (1 − x)SiO2 composition, x = 0.3, 0.5, 0.7, where parameter (1 − p) describes the degree of reduction, i.e. the content of the granular metallic phase, appearing as the result of the reduction process (e.g. annealing in hydrogen atmosphere). In the EXAFS experiment (1 − p) was expressed via the time of reduction realized at 400 °C (1.5 h, 24 h, 70 h), whereas in the MD simulations it was determined precisely by using proper numbers of particles (corresponding to (1 − p) = 0.0, 0.25, 0.5, 0.75 and 1.0). In the paper we describe in detail the local structure around lead atoms and its changes in the function of glass composition and reduction degree. The tendency for agglomeration of Pb0 into clusters, the formation of the granular metallic phase, and continuity of silica and lead oxide subnetworks are discussed. A good agreement between EXAFS-extractcd and MD-extracted parameters of the short-range structure encouraged us to preform a medium-range order analysis, based on the MD simulations only. Moreover, combining the EXAFS and MD methods we could correlate the reduction time (technological parameter) with the degree of reduction (1 − p) and the actual state of the granular structure. The latter relation may be useful for controlled production of reduced glasses of pre-requcstcd physical properties.  相似文献   

12.
E. Mansour 《Journal of Non》2011,357(5):1364-3380
Fourier transformation infrared spectra, density and DC electrical conductivity of 30Li2O · xCeO2⋅(70 − x)B2O3 glasses, where x ranged between 0 and 15 mol%, have been investigated. The results suggested that CeO2 plays the role of network modifier up to 7.5 mol%. At higher concentrations it plays a dual role; where most of ceria plays the role of network former. The density was observed to increase with increasing CeO2 content. The effect on density of the oxides in the glasses investigated is in the succession: B2O3 < Li2O < CeO2. Most of CeO2 content was found to be associated with B2O3 network to convert BO3 into B O4 units. The contribution of Li+ ions in the conduction process is much more than that due to small polarons. The conductivity of the glasses is mostly controlled by the Li+ ions concentration rather than the activation energy for CeO2 > 5 mol%. Lower than 5 mol% CeO2 the conductivity is controlled by both factors. The dependence of W on BO4 content supports the idea of ionic conduction in these glasses.  相似文献   

13.
Ta2O5, Ta-Nb-O, Zr-Al-Nb-O, and Zr-Al-O mixture films or solid solutions were grown on Si(1 0 0) substrates at 300 °C by atomic layer deposition. The equivalent oxide thickness of Ta2O5 based capacitors was between 1 and 3 nm. In Zr-Al-O films, the high permittivity of ZrO2 was combined with high resistivity of Al2O3 layers. The permittivity, surface roughness and interface charge density increased with the Zr content and the equivalent oxide thickness was between 2.0 and 2.5 nm. In the Zr-Al-Nb-O films the equivalent oxide thickness remained at 1.8-2.0 nm.  相似文献   

14.
The effect of Y2O3 addition on the phase transition and growth of yttria-stabilized zirconia (YSZ) nanocrystallites prepared by a sol-gel process with various mixtures of ZrOCl2 · 8H2O and Y(NO3)3 · 6H2O ethanol-water solutions at low temperatures has been studied. DTA/TGA, XRD, SEM, TEM and ED have been utilized to characterize the YSZ nanocrystallites. The crystallization temperature of 3YSZ, in which Y2O3/(Y2O3 + ZrO2) = 0.03, gel powders estimated by DTA/TG is about 427 °C. When 3YSZ and 5YSZ gels are calcined at 500-700 °C, their crystal structures as composed of coexisting tetragonal and monoclinic ZrO2, and tetragonal phase decreases with calcination temperature increasing from 500 to 700 °C. Pure cubic ZrO2 is obtained when added Y2O3 is greater than 8 mol%. A nanocrystallite size distribution between 10 and 20 nm is obtained in TEM observations.  相似文献   

15.
X-ray diffraction studies of glasses in the following ternary systems have been made: Na2OMgOSiO2, Na2OZnOSiO2, Na2OCaOSiO2 and Na2OBaOSiO2. The following heavy atom substitutions have been used: Ag for Na and Ge for Si. The changes in the electron radial distribution curves resulting from AgNa replacement can be explained as amplifications of relatively well-defined NaSi distances, which are nearly the same in all the glasses investigated. The GeSi substitution causes changes which can be explained on the basis of isostructural GeSi substitutions.  相似文献   

16.
Dielectric constant ε, loss tanδ and ac conductivity σac of 40CaO-xWO3-(60−x)P2O5 (with 0?x?15) glasses are studied over a range of frequencies and temperature. The dielectric breakdown strength of these glasses is also determined at room temperature. The values of dielectric parameters, viz., ε, tanδ and σac of CaO-P2O5 glasses are found to decrease with the introduction of WO3 up to 3 mol% and increase with further increase in the concentration of WO3; the probable reasons for such an increase are identified and explained with the aid of IR spectra and differential thermal analysis of these glasses. The variation of tanδ with temperature at different frequencies of CaO-P2O5 glasses has exhibited dielectric relaxation effects with decreasing relaxation intensity with increase in the concentration of WO3 from 0 to 3 mol%; such relaxation effects seem to have been absent in glasses containing WO3 beyond 3 mol%. The relaxation phenomenon has been analysed by a pseudo-Cole-Cole plot method and the possible mechanism responsible for such relaxation effects has been suggested.  相似文献   

17.
18.
Crystallization was examined for glasses having chemical composition of 2(Ca,Sr,Ba)O-TiO2-2SiO2 in which the CaO/SrO/BaO molar ratio varied. Powdered glass samples were pelleted into disks and sintered at 950 °C for 2 h. The major phase precipitated in the sintered samples was (Ca,Sr,Ba)2TiSi2O8 and minor phase of perovskite such as CaTiO3 or SrTiO3 increased with CaO content in the samples containing more than 40 mol% of CaO in total CaO+SrO+BaO. Three regions having different slopes were found in linear relationships between SrO mol% and exothermal peak temperature on DSC curves or d[0 0 2] values determined by powder XRD method. These facts suggested that the major phase precipitated in each region was a solid solution containing a different amount of CaO, SrO, BaO and that these compositions varied depending on SrO content in the sample. The micro-crystalline structure, which could be useful in fabricating a dielectric dense body, was observed for samples containing 30-70 mol% of SrO.  相似文献   

19.
Large single crystals of quasi-one-dimensional antiferromagnetic spin system NaV2−zTizO5 (0z0.06) have been successfully grown by a flux method. We present growth conditions together with a characterization of the single crystals by means of X-ray powder diffraction, energy dispersive X-ray (EDX) analysis and magnetic susceptibility measurements.  相似文献   

20.
Experimental EPR spectra in several modified vanadate glass systems reveal hyperfine structure (hfs) lines whose widths vary with the molar ratio of modifier to vanadium pentoxide, R. In the RNa2O.V2O5 system, for example, hfs lines show no resolution at low R values (near 0.1); by contrast, these lines exhibit dramatic narrowing as R approaches 0.5. In the model proposed here, this narrowing is due to an increase in hopping time for small polarons associated with V4+ ions in these systems. Increases in polaron hopping times are accompanied by increases in electron spin-spin relaxation times T2's, and, an associated narrowing of EPR linewidths. Experiments confirm that spectral widths are limited by electron T2's due to the fact that EPR linewidths do not vary with temperature down to 4.2 K. Resolved spectra in RNa2O.V2O5 at R = 0.5 reveal a hyperfine coupling parameter of 0.0177 ± 0.0008 T, corresponding to an upper-limit polaron hopping frequency of 487 ± 20 MHz. By similar analyses, the systems of RCaO.V2O5, RBaO.V2O5, and RLi2O.V2O5 exhibit comparable polaron hopping frequencies limits of 480 ± 20 MHz, 469 ± 20 MHz, and 468 ± 20 MHz, respectively, when R is near 1.0. In addition to the relaxation effects discussed here, results of modeling of resolved spectra to obtain hyperfine coupling constants A|| and A, and g values g|| and g are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号