首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 552 毫秒
1.
2.
The singularity manifold equation of the Kadomtsev-Petviashvili equation, the so-called Krichever-Novikov equation, has an exact linearization to an overdetermined system of partial differential equations in three independent variables. We study in detail the Cauchy problem for this system as an example for the use of the formal theory of differential equations. A general existence and uniqueness theorem is established. Formal theory is then contrasted with Janet-Riquier theory in the formulation of Reid. Finally, the implications of the results for the Krichever-Novikov equation are outlined.  相似文献   

3.
We prove the partial regularity of stable solutions of supercritical elliptic equations. As an application, we prove that any smooth stable entire solution to supercritical equations with pp in a suitable range is radially symmetric.  相似文献   

4.
We show, by an explicit construction, the existence of solutions to the Stokes system in dimension three that are singular on a fractal set. The singular points are understood in the sense given by Caffarelli, Kohn and Nirenberg [2]. As an application, we show the existence of suitable weak solutions to the Navier-Stokes equations, driven by rough forces, that are singular on a fractal set.  相似文献   

5.
We study uniformly elliptic fully nonlinear equations of the type F(D2u,Du,u,x)=f(x). We show that convex positively 1-homogeneous operators possess two principal eigenvalues and eigenfunctions, and study these objects; we obtain existence and uniqueness results for nonproper operators whose principal eigenvalues (in some cases, only one of them) are positive; finally, we obtain an existence result for nonproper Isaac's equations.  相似文献   

6.
We study a problem for two-dimensional steady potential and isentropic Euler equations in a bounded domain, where an artificial detached shock interacts with a wedge. Using the stream function, we obtain a free boundary problem for the subsonic state and the detached artificial shock curve and we prove that such configuration admits a unique solution in certain weighted Hölder spaces. The proof is based on various Hölder and Schauder estimates for second-order elliptic equations and fixed point theorems. Moreover, we pose an energy principle and remark that the physical attached shock is the minimizer of the energy functional.  相似文献   

7.
This is a study of the Euler equations for free surface water waves in the case of varying bathymetry, considering the problem in the shallow water scaling regime. In the case of rapidly varying periodic bottom boundaries this is a problem of homogenization theory. In this setting we derive a new model system of equations, consisting of the classical shallow water equations coupled with nonlocal evolution equations for a periodic corrector term. We also exhibit a new resonance phenomenon between surface waves and a periodic bottom. This resonance, which gives rise to secular growth of surface wave patterns, can be viewed as a nonlinear generalization of the classical Bragg resonance. We justify the derivation of our model with a rigorous mathematical analysis of the scaling limit and the resulting error terms. The principal issue is that the shallow water limit and the homogenization process must be performed simultaneously. Our model equations and the error analysis are valid for both the two- and the three-dimensional physical problems.  相似文献   

8.
We investigate the flow of a magneto-micropolar fluid in an arbitrary unbounded domain on which the Poincaré inequality holds. Assuming homogeneous boundary conditions and the external fields to be almost periodic in time we prove the existence of the uniform attractor by using the energy method [10] which we generalize to nonautonomous systems. We consider the problem in an abstract setting that allows to include also other hydrodynamical models. In particular, we extend the result of R. Rosa [12] from autonomous to nonautonomous Navier-Stokes equations in unbounded domains.  相似文献   

9.
We present a 2-component equation with exactly two nontrivial generalized symmetries, a counterexample to Fokas' conjecture that equations with as many symmetries as components are integrable. Furthermore we prove the existence of infinitely many evolution equations with finitely many symmetries. We introduce the concept of almost integrability to describe the situation where one has a finite number of symmetries. The symbolic calculus of Gel'fand-Dikiî andp-adic analysis are used to prove our results.  相似文献   

10.
We consider the initial (boundary) value problem for the Kirchhoff equations in exterior domains or in the whole space of dimension three, and show that these problems admit time-global solutions, provided the norms of the initial data in the usual Sobolev spaces of appropriate order are sufficiently small. We obtain uniform estimates of the L1(R) norms with respect to time variable at each point in the domain, of solutions of initial (boundary) value problem for the linear wave equations. We then show that the estimates above yield the unique global solvability for the Kirchhoff equations.  相似文献   

11.
We study the asymptotic behaviour in large diffusivity of inertial manifolds governing the long time dynamics of a semilinear evolution system of reaction and diffusion equations. A priori, we review both local and global dynamics of the system in scales of Banach spaces of Hilbert type and we prove the existence of a universal compact attractor for the equations. Extensions yield the existence of a family of nesting inertial manifolds dependent on the diffusion of the system of equations. It is introduced an upper semicontinuity notion in large diffusivity for inertial manifolds. The limit inertial manifold whose dimension is strictly less than those of the infinite dimensional system of semilinear evolution equations is obtained.  相似文献   

12.
Sumamry This article is concerned with the comparison of the dynamic of a partial differential equation and its time discretization. We restrict our attention to the neighborhood of a hyperbolic periodic orbit. We show that the discretization possesses an invariant closed curve near the periodic orbit and that the trajectories of the semigroups defined by the partial differential equations and its approximation are close in a sense to be precised provided that different data are allowed. This answers partly an open problem posed in [4]. Examples of application to dissipative partial equations are provided.  相似文献   

13.
A finite volume method with grid adaption is applied to two hyperbolic problems: the ultra-relativistic Euler equations, and a scalar conservation law. Both problems are considered in two space dimensions and share the common feature of moving shock waves. In contrast to the classical Euler equations, the derivation of appropriate initial conditions for the ultra-relativistic Euler equations is a non-trivial problem that is solved using one-dimensional shock conditions and the Lorentz invariance of the system. The discretization of both problems is based on a finite volume method of second order in both space and time on a triangular grid. We introduce a variant of the min-mod limiter that avoids unphysical states for the Euler system. The grid is adapted during the integration process. The frequency of grid adaption is controlled automatically in order to guarantee a fine resolution of the moving shock fronts. We introduce the concept of “width refinement” which enlarges the width of strongly refined regions around the shock fronts; the optimal width is found by a numerical study. As a result we are able to improve efficiency by decreasing the number of adaption steps. The performance of the finite volume scheme is compared with several lower order methods.  相似文献   

14.
We rectify an error in the proof of the Gaussian estimates for the heat kernel associated to certain weighted elliptic equations.  相似文献   

15.
We prove the global existence and uniqueness of solutions of certain mixed hyperbolic-parabolic systems of partial differential equations in one space dimension with initial data that is assumed to be pointwise bounded with possibly large oscillation and with small total energy. The systems we consider are general enough to include the Navier-Stokes equations of compressible flow, the equations of compressible MHD, models of chemical combustion, and others. In particular, the application of our results to the MHD system gives an existence result which is new.  相似文献   

16.
We prove an existence result for solutions of nonlinear parabolic equations with measure data in Orlicz–Sobolev spaces.  相似文献   

17.
We consider an abstract Cauchy problem for a system of nonhomogeneous abstract differential equations in Hilbert spaces. The “main” equation is of the second order and “boundary” equations are of the first order. Existence of a solution is proved. Application to mixed (initial boundary-value) problems for one-dimensional second order hyperbolic equations and for fourth order PDEs with the time derivative in boundary conditions has been shown. The first author was partially supported by 60% funds of the University of Bologna and G.N.A.M.P.A. of INdAM; the second author was supported by the Israel Ministry of Absorption.  相似文献   

18.
We show convergence of solutions to equilibria for quasilinear parabolic evolution equations in situations where the set of equilibria is non-discrete, but forms a finite-dimensional C1-manifold which is normally hyperbolic. Our results do not depend on the presence of an appropriate Lyapunov functional as in the ?ojasiewicz-Simon approach, but are of local nature.  相似文献   

19.
We consider Cauchy problems and periodic problems for two-fluid compressible Euler–Maxwell equations arising in the modeling of magnetized plasmas. These equations are symmetrizable hyperbolic in the sense of Friedrichs but don?t satisfy the so-called Kawashima stability condition. For both problems, we prove the global existence and long-time behavior of smooth solutions near a given constant equilibrium state. As a byproduct, we obtain similar results for two-fluid compressible Euler–Poisson equations.  相似文献   

20.
We study here instability problems of standing waves for the nonlinear Klein–Gordon equations and solitary waves for the generalized Boussinesq equations. It is shown that those special wave solutions may be strongly unstable by blowup in finite time, depending on the range of the wave's frequency or the wave's speed of propagation and on the nonlinearity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号