首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Navier-Stokes equations for a compressible barotropic fluid in 1D with zero velocity boundary conditions are considered. We study the case of large initial data in H1 as well as the mass force such that the stationary density is uniquely determined but admits vacua. Missing uniform lower bound for the density is compensated by a careful modification of the construction procedure for a Lyapunov functional known for the case of solutions which are globally away from zero [I. Straškraba, A.A. Zlotnik, On a decay rate for 1D-viscous compressible barotropic fluid equations, J. Evol. Equ. 2 (2002) 69-96]. An immediate consequence of this construction is a decay rate estimate for this highly singular problem. The results are proved in the Eulerian coordinates for a large class of increasing state functions including p(ρ)=aργ with any γ>0 (a>0 a constant).  相似文献   

2.
We consider a rigid body possessing 3 mutually perpendicular planes of symmetry, sinking in an ideal fluid. We prove that the general solution to the equations of motion branches in the complex time plane, and that the equations consequently are not algebraically integrable. We show that there are solutions with an infinitely-sheeted Riemannian surface.  相似文献   

3.
The Navier-Stokes equations for compressible barotropic fluid in 1D with the mass force under zero velocity boundary conditions are studied. We prove the uniform upper and lower bounds for the density as well as the uniform in time L 2()-estimates for x and u x (u is the velocity). Moreover, a collection of the decay rate estimates for - (with being the stationary density) and u in 2()-norm and H 1()-norm as time t are established. The results are given for general state function p() (but mainly monotone) and viscosity coefficient µ() of arbitrarily fast (or slow) growth as well as for the large data.  相似文献   

4.
We investigate a steady flow of a viscous compressible fluid with inflow boundary condition on the density and inhomogeneous slip boundary conditions on the velocity in a cylindrical domain Ω=Ω0×(0,L)∈R3. We show existence of a solution , p>3, where v is the velocity of the fluid and ρ is the density, that is a small perturbation of a constant flow (, ). We also show that this solution is unique in a class of small perturbations of . The term u⋅∇w in the continuity equation makes it impossible to show the existence applying directly a fixed point method. Thus in order to show existence of the solution we construct a sequence (vn,ρn) that is bounded in and satisfies the Cauchy condition in a larger space L(0,L;L2(Ω0)) what enables us to deduce that the weak limit of a subsequence of (vn,ρn) is in fact a strong solution to our problem.  相似文献   

5.
We consider the free boundary problem for an incompressible ideal fluid in the two-dimensional space. We show the unique existence of the solution, locally in time, even if the initial surface and the bottom are uneven.  相似文献   

6.
We consider the Cauchy problem for the system of equations governing flow of isothermal reactive mixture of compressible gases. Our main contribution is to prove sequential stability of weak solutions when the state equation essentially depends on the species concentration and the viscosity coefficients vanish on vacuum. Moreover, under additional assumption on the “cold” component of the pressure in the regions of small density, we prove the existence of weak solutions for arbitrary large initial data.  相似文献   

7.
The initial boundary value problem for the compressible Navier-Stokes equation is considered in an infinite layer of Rn. It is proved that if n?3, then strong solutions to the compressible Navier-Stokes equation around parallel flows exist globally in time for sufficiently small initial perturbations, provided that the Reynolds and Mach numbers are sufficiently small. The proof is given by a variant of the Matsumura-Nishida energy method based on a decomposition of solutions associated with a spectral property of the linearized operator.  相似文献   

8.
9.
We study a large time behavior of a solution to the initial boundary value problem for an isentropic and compressible viscous fluid in a one-dimensional half space. The unique existence and the asymptotic stability of a stationary solution are proved by S. Kawashima, S. Nishibata and P. Zhu for an outflow problem where the fluid blows out through the boundary. The main concern of the present paper is to investigate a convergence rate of a solution toward the stationary solution. For the supersonic flow at spatial infinity, we obtain an algebraic or an exponential decay rate. Precisely, if an initial perturbation decays with the algebraic or the exponential rate in the spatial asymptotic point, the solution converges to the corresponding stationary solution with the same rate in time as time tends to infinity. An algebraic convergence rate is also obtained for the transonic flow. These results are proved by the weighted energy method.  相似文献   

10.
11.
In this paper, we establish the spatial decay bounds for homogeneous Boussinesq equations in a semi-infinite pipe flow. Assuming that the entrance velocity and magnetic field data are restricted appropriately, and it converges to laminar flow as the distance down the pipe tends to infinity, we derive a second order differential inequality that leads to an exponential decay estimate for the energy E(z,t) defined in (27). We also indicate how to establish the explicit bound for the total energy.  相似文献   

12.
The global existence of measure-valued solutions of initial boundary-value problems in bounded domains to systems of partial differential equations for viscous non-Newtonian isothermal compressible monopolar fluid and the global existence of the weak solution for multipolar fluid is proved.  相似文献   

13.
In the analysis of the long-time behavior of two-dimensional incompressible viscous fluids, Oseen vortices play a major role as attractors of any homogeneous solution with integrable initial vorticity [T. Gallay, C.E. Wayne, Global stability of vortex solutions of the two-dimensional Navier–Stokes equation, Commun. Math. Phys. 255 (1) (2005) 97–129]. As a first step in the study of the density-dependent case, the present paper establishes the asymptotic stability of Oseen vortices for slightly inhomogeneous fluids with respect to localized perturbations.  相似文献   

14.
In this paper we study the flow of incompressible Newtonian fluid through a helical pipe with prescribed pressures at its ends. Pipe’s thickness and the helix step are considered as the small parameter ɛ. By rigorous asymptotic analysis, as ɛ→ 0 , the effective behaviour of the flow is found. The error estimate for the approximation is proved.  相似文献   

15.
Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation lengths, at a unique position where the largest waves appear, phase singularities are present in the time signal. These singularities are related to wave dislocations and lead to a discrimination between successive ‘extreme’ waves and much smaller intermittent waves. Energy flow in opposite directions through successive dislocations at which waves merge and split, causes the large amplitude difference. The envelope of the time signal at that point is shown to have a simple phase plane representation, and will be described by a symmetry breaking unfolding of the steady state solutions of NLS. The results are used together with the maximal temporal amplitude MTA, to design a strategy for the generation of extreme (freak, rogue) waves in hydrodynamic laboratories.  相似文献   

16.
In this paper, the existence and the uniqueness of the global solution for the Cauchy problem of the generalized double dispersion equation are proved. The blow-up of the solution for the Cauchy problem of the generalized double dispersion equation is discussed by the concavity method under some conditions.  相似文献   

17.
The aim of this paper is to study the behaviour of a weak solution to Navier-Stokes equations for isothermal fluids with a nonlinear stress tensor for time going to infinity. In an analogous way as in [18], we construct a suitable function which approximates the density for time going to infinity. Using properties of this function, we can prove the strong convergence of the density to its limit state. The behaviour of the velocity field and kinetic energy is mentioned as well.  相似文献   

18.
In the present paper, we investigate the large-time behavior of the solution to an initial-boundary value problem for the isentropic compressible Navier-Stokes equations in the Eulerian coordinate in the half space. This is one of the series of papers by the authors on the stability of nonlinear waves for the outflow problem of the compressible Navier-Stokes equations. Some suitable assumptions are made to guarantee that the time-asymptotic state is a nonlinear wave which is the superposition of a stationary solution and a rarefaction wave. Employing the L2-energy method and making use of the techniques from the paper [S. Kawashima, Y. Nikkuni, Stability of rarefaction waves for the discrete Boltzmann equations, Adv. Math. Sci. Appl. 12 (1) (2002) 327-353], we prove that this nonlinear wave is nonlinearly stable under a small perturbation. The complexity of nonlinear wave leads to many complicated terms in the course of establishing the a priori estimates, however those terms are of two basic types, and the terms of each type are “good” and can be evaluated suitably by using the decay (in both time and space variables) estimates of each component of nonlinear wave.  相似文献   

19.
Solutions for the fully compressible Navier–Stokes equations are presented for the flow and temperature fields in a cubic cavity with large horizontal temperature differences. The ideal-gas approximation for air is assumed and viscosity is computed using Sutherland's law. The three-dimensional case forms an extension of previous studies performed on a two-dimensional square cavity. The influence of imposed boundary conditions in the third dimension is investigated as a numerical experiment. Comparison is made between convergence rates in case of periodic and free-slip boundary conditions. Results with no-slip boundary conditions are presented as well. The effect of the Rayleigh number is studied.  相似文献   

20.
In this paper, we prove the existence and the uniqueness of global solution for the Cauchy problem for the generalized Boussinesq equation. Under some assumptions, we also show that the LL norm of small solution of the Cauchy problem for the generalized Boussinesq equation decays to zero as tt tends to the infinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号