首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potential fouling reducing coating materials were synthesized via free-radical photopolymerization of aqueous solutions of poly(ethylene glycol) diacrylate (PEGDA). Crosslinked PEGDA (XLPEGDA) exhibited high water permeability and good fouling resistance to oil/water mixtures. Water permeability increased strongly with increasing the water content in the prepolymerization water mixture, going from 10 to 150 L μm/(m2 h bar) as prepolymerization water content increased from 60 to 80 wt.%. However, molecular weight cutoff decreased as water content increased. These materials were applied to polysulfone (PSF) UF membranes to form coatings on the surface of the PSF membranes. Oil/water crossflow filtration experiments showed that the coated PSF membranes had water flux values 400% higher than that of an uncoated PSF membrane after 24 h of operation, and the coated membranes had higher organic rejection than the uncoated membranes.  相似文献   

2.
Poly(4-methyl-2-pentyne) (PMP) has been crosslinked using 4,4′-(hexafluoroisopropylidene) diphenyl azide (HFBAA) to improve its chemical and physical stability over time. Crosslinking PMP renders it insoluble in good solvents for the uncrosslinked polymer. Gas permeability and fractional free volume (FFV) decreased as crosslinker content increased, while gas sorption was unaffected by crosslinking. Therefore, the reduction in permeability upon crosslinking PMP was due to decrease in diffusion coefficient. Compared to the pure PMP membrane, the permeability of the crosslinked membrane is initially reduced for all gases tested due to the crosslinking. By adding nanoparticles (FS, TiO2), the permeability is again increased; permeability reductions due to crosslinking could be offset by adding nanoparticles to the membranes. Increased selectivity is documented for the gas pairs O2/N2, H2/N2, CO2/N2, CO2/CH4 and H2/CH4 using crosslinking and addition of nanoparticles. Crosslinking is successful in maintaining the permeability and selectivity of PMP membranes and PMP/filler nanocomposites over time.  相似文献   

3.
The present work presents a study on the grafting of polyurethane onto chitosan. Prepolymers (polyurethanes) were obtained by condensation reactions between poly(ethylene glycol) of two different molar masses and isophorone diisocyanate. Characterization of graft copolymers was performed by infrared spectroscopy (IR) and 13C Nuclear Magnetic Resonance in the solid state (13C NMR). Evidences of grafting were obtained by IR from the absorbance increase of relative intensity of NH and CO bands, with respect to chitosan. The degree of NH2 substitution by urea groups observed from 0.12 to 0.59 was estimated from NMR data. The graft copolymers exhibited different solubility behavior as a function of degree of substitution, such as partial solubility, gelation or swelling in diluted acetic acid, and swelling in water, dimethylsulfoxide and acetic acid/sodium acetate.  相似文献   

4.
In this study a series of chemically crosslinked chitosan/poly(ethylene glycol) (CS/PEG) composite membranes were prepared with PEG as a crosslinking reagent other than an additional blend. First, carboxyl-eapped poly(ethylene glycol) (HOOC-PEG-COOH) was synthesized. Dense CS/PEG composite membranes were then prepared by casting/evaporation of CS and HOOC-PEG-COOH mixture in acetic acid solution. Chitosan was chemically crosslinked due to the amidation between the carboxyl in HOOC-PEG-COOH and the amino in chitosan under heating, as confirmed by FTIR analysis. The hydrophilicity, water-resistance and mechanical properties of pure and crosslinked chitosan membranes were characterized, respectively. The results of water contact angle and water absorption showed that the hydrophilicity of chitosan membranes could be significantly improved, while no significant difference of weight loss between pure chitosan membranes and crosslinked ones was detected, indicating that composite membranes with amidation crosslinking possess excellent water resistanance ability. Moreover, the tensile strength of chitosan membranes could be significantly enhanced with the addition of certain amount of HOOC-PEG-COOH crosslinker, while the elongation at break didn't degrade at the same time. Additionally, the results of swelling behaviors in water at different pH suggested that the composite membranes were pH sensitive.  相似文献   

5.
Using polyethylene glycol(PEG) or glycerol as the plasticizer, we synthesized the hydrogels from poly(ethylene glycol) diacrylate(PEGDA), polyvinylpyrrolidone(PVP) and poly(vinyl alcohol)(PVA) under UV radiation. The effects of different plasticizers on the mechanical properties and adhesion properties of the hydrogels were investigated. The results show that the plasticizer can improve the elongation and peeling force. The most pronounced changes in the tensile property of the hydrogels are due to the addition of glycerol followed by PEG, the lower the plasticizer's molecular weight, the greater its effect. The maximum peeling force is 0.317 or 0.257 N with PEG or glycerol as plasticizer, respectively, and their adhesion properties are due to the formation of hydrogen bonds.  相似文献   

6.
TheSynthesisofPoly(ethyleneoxide)┐Block┐Polybutylacrylate**SupportedbytheNationalNaturalScienceFoundationofChinaandDoctoralfo...  相似文献   

7.
The novel biodegradable copolymer PDLLA-(MAH-Diol)_n-PDLLAwith unsaturated bond was synthesized by copolymerizing lactide and prepolymer, which was prepared by the polycondensation of maleic anhydride and poly(ethylene glycol), using p- toluene sulphonic acid as catalyst. The new copolymer has improved hydrophilicity and fexibility. The structure and properties of the novel polymers were studied by FTIR, NMR, GPC-MALLS and DSC.  相似文献   

8.
A novel polymer matrix containing amino–nitro substituted azobenzene groups was obtained by frontal polymerization. (E)‐2‐(Ethyl(4‐((4‐nitrophenyl)diazenyl)phenyl)amino)ethyl methacrylate (MDR‐1) was copolymerized with poly(ethylene glycol) diacrylate (PEGDA) using this easy and fast polymerization technique. The effect of the amount of the incorporated azo‐monomer into the polymer matrix was studied in detail and correlated to front velocity, maximum temperature, initiator concentration, and monomer conversion. The obtained materials were characterized by infrared spectroscopy (Fourier transform infrared), and their thermal properties were studied by thermogravimetric analysis and differential scanning calorimetry. Moreover, the optical properties of the polymers were studied by absorption spectroscopy in the UV–Vis region. Absorption spectra of the copolymers exhibit a significant blue shift of the absorption bands with respect to the azo‐monomer, due to the presence of H‐aggregates. Cubic nonlinear optical (NLO) characterizations of the PEGDA/MDR‐1 copolymers were performed according to the Z‐Scan technique. It has been proven that samples with higher MDR‐1 content (0.75 mol %) exhibited outstandingly high NLO‐activity with negative NLO‐refractive coefficients in the promising range of n2 = ?8.057 × 10?4 esu. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Poly(ethylene glycol) diacrylate/polyvinyl alcohol(PEGDA/PVA) hydrogels were prepared from PEGDA and PVA as precurors by means of single UV radiation(UV ra.), UV radiation followed by high energy electron beam irradiation(Irra.), UV radiation followed by freeze-thawing(FT) or UV ra. and Irra. followed by FT, respectively. 2-Hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone(Irgacure 2959) was used as a photoinitiator. The effects of the various methods on the swelling and mechanical properties of the hydrogels were investigated. The results show that hydrogels made by UV ra. plus high energy electron beam irradiation followed by FT showed a higher crosslinking density and a larger tensile strength than those made by the other methods.  相似文献   

10.
A new type of nanocapsules with an oil core, coated by poly(ethylene glycol) (PEG) was designed. The loading efficiency and the biocompatibility of the polymeric nanocapsules were evaluated when it was used as a carrier for hydrophobic agent paclitaxel. The nanocapsules were synthesized through miniemulsion polymerization of butylcyanoacrylate (BCA) with PEG as initiator. The particle size and zeta potential of nanocapsules were influenced by the PEG content in the polymerization system. Fourier transform infrared (FTIR) spectra and 1H NMR demonstrated the chemical coupling between PEG and poly(butylcyanoacrylate) (PBCA). Thermal characteristics of the copolymer were investigated by differential scanning calorimetry (DSC). The encapsulation efficiency increased concurrently with the increase of the PEG content in the system. The hemolytic assay and the cytotoxicity measurement showed that the PEG coating could significantly reduce the hemolytic potential and cytotoxicity of the nanocapsules. The results showed that the PEG-PBCA nanocapsules could be an effective carrier for hydrophobic agents.  相似文献   

11.
采用具有紫外光聚合性能的聚乙二醇(PEG)基水凝胶材料, 通过紫外光聚合作用快速加工双层水凝胶微流控芯片, 并验证了其对肿瘤细胞代谢液进行检测的可行性. 与传统微流控芯片材料相比, 该水凝胶芯片材料具有更好的生物相容性及可操控性, 可直接加工成形, 在生物学领域特别是细胞培养过程控制方面具有良好的应用前景. 实验结果表明, 该水凝胶微流控芯片可在微尺度空间有效模拟细胞生长环境, 并实现对细胞连续捕获后的原位培养. 将该芯片与卟啉可视阵列传感器系统结合, 经代谢特征分析可有效区分不同种类肿瘤细胞, 实现芯片细胞培养平台上的细胞代谢指纹快速可视化传感检测.  相似文献   

12.
The concept of biocompatibility with reference to chromatographic stationary phases for separation of biomolecules (including proteins and peptides) is introduced. Biocompatible is a characteristic that indicates resistance to nonspecific adsorption of biomolecules and preservation of their structures and biochemical functions. Two types of biocompatible polymeric monoliths [i. e., polyacrylamide‐ and poly(meth)acrylate‐based monoliths] used for protein and peptide separations are reviewed in detail, with emphasis on size exclusion, ion exchange, and hydrophobic interaction chromatographic modes. Biocompatible monoliths for enzyme reactors are also included. The two main synthetic approaches to produce biocompatible monoliths are summarized, i. e., surface modification of a monolith that is not inherently biocompatible and direct copolymerization of hydrophilic monomers to form a biocompatible monolith directly. Integration of polyethylene glycol into the poly(meth)acrylate monolith network is becoming popular for reduction of non‐specific protein interactions.  相似文献   

13.
A series of the semi-interpenetrating polymer network (semi-IPN) membranes based on sulfonated polyimide and poly(ethylene glycol) diacrylate were prepared and characterized comparing with pure sulfonated polyimide membrane and commercially available membrane, Nafion® 117. The proton conductivity increased with the increase of poly(ethylene glycol) diacrylate contents in spite of the decrease in ion exchange capacity which is a key factor to improve the proton conductivity. The water stability of semi-IPN membranes containing poly(ethylene glycol) diacrylate is higher than the pure sulfonated polyimide membrane. Morphological structure showed that amorphous nature of the films also increased with the poly(ethylene glycol) diacrylate contents, which could make a crosslink, so that the crystallinity of polyimide could disappear. Semi-IPN membranes based on sulfonated polyimide and poly(ethylene glycol) diacrylate, which show good conductivity comparable to Nafion® 117 in the range of 20-50% content of poly(ethylene glycol) diacrylate, could be promising proton conducting membranes in fuel cell application.  相似文献   

14.
《先进技术聚合物》2018,29(9):2467-2476
Poly (caprolactone) membranes with addition of different poly (ethylene glycol) concentrations were prepared for separation of water/isopropanol azeotropic mixture by pervaporation process. Different characterization tests including Fourier transform infrared, scanning electron microscopy, water contact angle, and thermogravimetric analysis were carried out on the prepared membranes. In addition, the effect of poly (ethylene glycol) PEG content on the swelling degree and the performance of the prepared membranes in pervaporation process were investigated. According to the obtained results, all the membranes were water selective and the blend membrane containing 3 wt% PEG exhibited the best pervaporation performance with a water flux of 0.517 kg/m2 hour and separation factor of 1642 at the ambient temperature. Hydrophilicity improvement of the blend membranes was confirmed by constant decrease in water contact angle of the membranes as PEG content increased in the casting solution. Scanning electron microscopy cross‐sectional images indicated that the blend membranes containing PEG had a closed cellular structure. Furthermore, mechanical and thermal properties of the membranes decreased by adding PEG.  相似文献   

15.
PMMA/PVDF composite membranes were prepared by isothermal immersion-precipitation of dope solutions consisting of PMMA, PVDF, and DMSO into both harsh and soft nonsolvent baths. The effects of PMMA and DMSO contents on the membrane morphology, crystal structure, thermal behavior and tensile strength of the formed membrane were investigated. For a PMMA-free casting dope immersed in a harsh bath, such as pure water, the formed membrane exhibited a typical asymmetric morphology characterized by skin, finger-like macrovoids, and cellular pores. In contrast, when a soft 70% DMSO bath was adopted, PVDF crystallized to form a membrane packed by spherulitic globules. Incorporation of PMMA gave rise to interesting morphological features; e.g., PVDF globules were observed to adhere to the interlocked polymer branches coexisting with the continuous porous channels, as revealed by high resolution FESEM imaging. XPS analysis of the surfaces of the composite membranes suggested the occurrence of a surface segregation phenomenon, wherein PVDF preferentially migrated to the top surface region of the membrane such as to minimize the interfacial energy. XRD analyses indicated that PVDF crystallized into ‘α’ structure in both PVDF and PMMA/PVDF composite membranes. The crystallinity of the membranes was found to decrease with increasing PMMA content, which was confirmed by DSC thermal analyses. The latter results also indicated a significant decrease in membrane’s melting temperature as the PMMA content was increased. Tensile strengths of the membranes were improved by inclusion of PMMA in either harsh or soft baths. However, elongation at break showed a reversed trend.  相似文献   

16.
A series of novel biodegradable hydrogels were designed and synthesized from four types of unsaturated poly(ester amide) (UPEA) and poly(ethylene glycol) diacrylate (PEG‐DA) precursors by UV photocrosslinking. These newly synthesized biodegradable UPEA/PEG‐DA hydrogels were characterized by their gel fraction (Gf), equilibrium swelling ratio (Qeq), compressive modulus, and interior morphology. The effect of the precursor feed ratio (UPEAs to PEG‐DA) on the properties of the hydrogels was also studied. The incorporation of UPEA polymers into the PEG‐DA hydrogels increased their hydrophobicity, crosslinking density (denser network), and mechanical strength (higher compressive modulus) but reduced Qeq. When different types of UPEA precursors were coupled with PEG‐DA at the same feed ratio (20 wt %), the resulting hydrogels had similar Qeq values and porous three‐dimensional interior morphologies but different Gf and compressive modulus values. These differences in the hydrogel properties were correlated to the chemical structures of the UPEA precursors; that is, the different locations of the >C?C< double bonds in individual UPEA segments resulted in their different reactivities toward PEG‐DA to form hydrogels. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3932–3944, 2005  相似文献   

17.
Vesicles possessing poly(ethylene glycol) (PEG) chains on their surface have been described as a blood-persistent drug delivery system with potential applications for intravenous drug administration. In this research with different molecular weights (400–10,000 g/mol) of PEG, a series of Chol–PEGm conjugates were generated by the DCC (N,N′-dicyclohexylcarbodiimide, DCC)/(4-dimethylaminopyridine, 4-DMAP) esterification method, and confirmed by FT-IR and 1H NMR spectrum. Then their properties in aqueous solution were studied by electron microscopy images, associative behavioral and systematic tensiometric studies over a wide concentration range. In order to elucidate the application of this Chol–PEGm in vesicles, conventional nonionic surfactant vesicles (niosomes) composed of span 60 and cholesterol were prepared and the influence of various hydrophilic chains of the Chol–PEGm conjugates was investigated. Results indicated that all the niosomes prepared, with or without Chol–PEGm composition were similar in micrograph with diameter between 120 nm and 180 nm. The fixed aqueous layer thickness (FALT) around niosomes increased as Chol–PEGm chain length increase, particularly in the Chol–PEG10,000 modified niosomes with 9.33 ± 0.67 nm. In vitro release experiments indicated that release rate of nimodipine from Chol–PEGm modified niosomes was enhanced. Chol–PEGm modified niosomes showed greater accumulative release than that of plain niosomes over a period of 24 h. These studies have shed some light on the suitability of Chol–PEGm containing niosome preparation.  相似文献   

18.
Two‐photon polymerization (2PP) is a versatile microfabrication tool for biomedical applications as it provides unparalleled resolution for accurate three‐dimensional (3D) replication of biological microstructures. To widen the selection of biomaterials suitable for 2PP, this paper presents the processing of a methacrylated poly(ε‐caprolactone)‐based oligomer (PCL‐o) and a poly(ethylene glycol) diacrylate (PEGda) hydrogel into microstructures. PCL‐o is a novel biodegradable photopolymer that has not been previously processed with 2PP, and the fabrication of both polymers with an Nd:YAG laser is reported here for the first time. The overall 2PP processability and achievable resolution were studied by polymerizing arbitrary microstructures on glass substrates. The samples were characterized with scanning electron microscopy. Additionally, the effect of photoinitiator concentration on the resolution was investigated. Also, a preliminary cell attachment test was performed with UV cured films in order to investigate the impact of the used material–initiator combination on cell viability and migration. As a result, laser‐induced polymerization of both PCL‐o and PEGda was successfully demonstrated, and the Nd:YAG laser was proven adequate for the 2PP processing of the novel biodegradable photoresist. Resolution in the order of 1 µm was achieved with PCL‐o. With the easy processing of both PEGda and PCL‐o, these materials have great potential for different biomedical applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Two synthetic ways were experimented to prepare new architectures of block copolymers made of poly(ethylene glycol) (PEG) and poly(methylthiirane). The coupling of both blocks conveniently end-capped as well as anionic polymerization of methylthiirane initiated by PEG-thiols gave readily the copolymers. Their characterization by 1H NMR, SEC and IR confirmed the expected structures.  相似文献   

20.
Polyurethane prepolymers (PU) based on hydrophilic poly(ethylene glycol) (PEG), hydroxypropyl acrylic acid (HPA), 2,4-toluene diisocyanate (TDI), and butanediol (BDO) were prepared by one-step polymerization with butanediol as the chain extender. Polyurethane-polystyrene graft copolymers (PU-g-PS) were synthesized by free radical copolymerization of PU with styrene (ST), 2,2′-azobisisobutyronitrile (AIBN) was used as initiator and toluene as solvent. Experimental results showed that the crosslinked membranes of PU-PS graft copolymers could be used for separating ethanol-water mixtures. The highest value of the separation factor (α) of the crosslinked separation membranes can reach 17.3. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were used to characterize the properties of PU-PS crosslinked membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号