首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A selective and sensitive liquid chromatographic method was developed for the determination of fluoxetine (FLU) in plasma. FLU was isolated from plasma by liquid-liquid extraction. The chromatographic separation was performed on an analytical 250 x 3.9 mm id Novapak C18 column (4 microm particle size) with an isocratic mobile phase consisting of phosphate buffer-acetonitrile-methanol -triethylamine (58 + 30 + 10 + 2, v/v) adjusted to pH 7. Using UV detection at 226 nm, the detection limit for FLU in plasma was 3 ng/mL. No interferences were found with tricyclic antidepressant drugs, which allows this method to be used in clinical studies. The calibration curve was linear over the concentration range of 10-200 ng/mL. The average recovery was about 80% for plasma. The inter- and intraday assay coefficients of variation were <8%.  相似文献   

2.
Huperzine A is a potent, reversible acetylcholinesterase inhibitor. In the present work, a rapid and sensitive LC-MS-MS method for the determination of huperzine A in human plasma using codeine phosphate as internal standard has been developed and validated. The analyte and internal standard were extracted from plasma using ethyl acetate, chromatographed on a C(18) column (5 microm, 150 x 4.6 mm i.d.) with a mobile phase consisting of 1% formic acid-methanol (40:60, v/v), and detected using a tandem mass spectrometer with a TurboIonSpray ionization interface. The run time was only 2 min. Good linearity was achieved in the range 0.126 -25.2 ng/mL and the limit of detection in plasma was 0.064 ng/mL. The average recovery for huperzine A was 83.4% from plasma. The analytical sensitivity and accuracy of this assay is adequate for characterization of huperzine A in human plasma.  相似文献   

3.
This work reports the use of multidimensional HPLC by coupling a restricted access medium (RAM) bovine serum albumin (BSA) octadecyl column (100 x 4.6 mm I.D., 10 microm particle size and 120 A pore size) to an octadecyl Hypersil column (150 x 4.6 mm I.D., 5 microm particle size and 120 A pore size) to the analysis of amoxycillin in human plasma by direct injection. Ion pairing was necessary to extract amoxycillin with good recovery from the plasma proteins. To prepare the spiked samples, aliquots (60 microl) of the appropriated standard solutions were added to each culture tube containing an 180 microl of plasma and a solution of 0.30 mM tetrabuthylammonium phosphate (60 microl). They were vortexed for 15 s and then 290 microl were transferred to autosampler vials. Aliquots (250 microl) of the spiked plasma samples were injected to a column-switching HPLC system. An analysis time of 25 min with no time spent on sample preparation was achieved. The developed method showed good selectivity, sensitivity, accuracy and precision for direct analysis of this polar low wavelength ultraviolet absorption antibiotic using only 180 microl of human plasma. The validated method proved to be reliable and sensitive for the determination of amoxycillin in plasma samples of five healthy volunteers to whom test and reference formulations were administered as an oral dose (500 mg).  相似文献   

4.
This study presents the application of a system that joins the known advantages of capillary liquid chromatography (e.g., higher concentration of the analytes and lower consumption of mobile phase) with those of column-switching using restricted access material (RAM) (sample clean up and extraction) to the analysis of fluoxetine in plasma samples. Automatically, the system loads the biological sample, while a RAM-BSA-C18 column (50 mm x 520 microm) excludes the macromolecules and focuses the analytes; afterwards, a second mobile phase elutes the analytes, in backflush mode, and provides the separation in a C18 analytical column (100 mm x 520 microm). We optimized the procedure for a total analysis time of 25 min. Using this approach the calibration curve shows r=0.998 with a linearity range from 20 to 500 ng ml(-1). Precision, calculated as relative standard deviation (RSD), was<20%. The developed miniaturized system showed to be adequate and attractive, demonstrating a large potential for sample preparation.  相似文献   

5.
Atrasentan is an endothelin antagonist selective for the ET(A) receptor in development at Abbott Laboratories for the treatment of cardiovascular disease and cell proliferation disorders. A simple and sensitive chromatographic method for the determination of atrasentan in human plasma has been developed and validated. The analytical method involves acidification of the plasma samples with 0.3 N HCl prior to extraction with 1:1 (v:v) hexane/tert-butylmethylether. The organic extract was evaporated to dryness, reconstituted with 20:80 (v:v) acetonitrile/0.05 M K(2)HPO(4) and washed with 75:25 (v:v) hexane/tert-butylmethylether. The organic layer was discarded and the aqueous layer was injected into the HPLC. Atrasentan and internal standard (ABT-790) were separated from interference using a 250 x 4.6 mm, 5 microm, 120 A Phenomenex Spherisorb C(8) analytical column with a 50 x 4.6 mm, Alltech Absorbosphere 5 microm CN guard cartridge using a mobile phase consisting of 25:15:5:55 (v:v:v:v) acetonitrile/isopropanol/methanol/0.05 M K(2)HPO(4), pH 7.0, at a flow rate of 1.0 mL/min. Fluorescence detection was achieved using lambda(ex) 278 nm and lambda(em) 322 nm. For a 1.0 mL plasma sample volume, the limit of quantitation was approximately 200 pg/mL. The method was linear from 0.2 to 1300 ng/mL (r(2) = 0.9986). Inter- and intra-day assay RSD (n = 6) were less than 10%. Mean accuracy determinations showed the quality control samples to range between 94 and 99% of the theoretical concentration.  相似文献   

6.
Rapid, selective, and sensitive methodology for the quantification of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in human plasma using packed capillary liquid chromatography coupled to electrospray ionization ion-trap mass spectrometry has been developed. Plasma proteins were precipitated using acetonitrile and the resulting supernatant was diluted 1+1 with water containing 10 mM ammonium acetate (NH4Ac) prior to injection. Sample volumes of 250 microL were loaded onto a 30 mm x 0.32 mm ID 10 microm Kromasil C18 precolumn by a carrier solution consisting of 10 mM NH4Ac in ACN/H2O (5/95, v/v) at a flow rate of 100 microL/min, providing on-line analyte enrichment and sample clean-up. Backflushed elution onto a 100 mm x 0.32 mm ID 3.5 microm Kromasil C18 analytical column was conducted using an ACN/H2O solvent gradient containing 10 mM NH4Ac. In order to improve the robustness and performance of the method, perfluoroheptanoic acid (PFHA) was used as internal standard. Separation and detection of PFOA, PFHA, and PFOS were achieved within 10 minutes. Ionization was performed in the negative mode in the m/z range 250-550. The method was validated over the concentration range 1-200 ng/mL for PFOA and over the range 5-200 ng/mL untreated plasma for PFOS, yielding correlation coefficients of 0.997 (PFOA) and 0.996 (PFOS), respectively. The within-assay (n = 6) and between-assay (n = 6) precisions were in the range 2.1-9.2 and 5.6-12%, respectively. The concentration limits of detection (cLOD) of PFOA was 0.5 ng/mL while the cLOD of PFOS was estimated to be 0.2 ng/mL in untreated plasma.  相似文献   

7.
A method of analysis of piceatannol in biological fluids is necessary to study the kinetics of in vitro and in vivo metabolism and determine its concentration in foodstuffs. A novel and simple high-performance liquid chromatographic method was developed for simultaneous determination of piceatannol and products of its metabolism in rat serum and liver microsomes. Serum, or microsomes (0.1 mL), were precipitated with acetonitrile after addition of the internal standard, 4-methylumbelliferone. Separation was achieved on a phenomenex C(18) column (250 x 4.6 mm i.d., 5 microm) equipped with a phenomenex C(18) (4 x 3.0 mm i.d., 5 microm) guardcolumn with fluorescence excitation at 320 nm and emission at 420 nm. Separation was also possible with UV detection at 310 nm. The fluorescent calibration curves were linear ranging from 0.05 to 100 microg/mL. The mean extraction efficiency was >95%. Precision of the assay was <10% (coefficient of variation), and was within 10% at the limit of quantitation (0.05 ng/mL). Bias of the assay was lower than 7%. The limit of detection was 50 ng/mL for a 0.1 mL sample. The assay was applied successfully to the in vitro kinetic study of metabolism of piceatannol in rat liver microsomes and pharmacokinetics in rats. Three metabolites of piceatannol have been identified. .  相似文献   

8.
A sensitive and selective method, using liquid chromatography-ionspray mass spectrometry, was developed and validated for the simultaneous determination of Estracyt (estramustine phosphate) and its four metabolites, estramustine, estromustine, estrone and estradiol, in human plasma. Deuterated internal standards were available for all analytes. The five compounds were extracted from plasma by protein precipitation with acetonitrile. The chromatographic separation was performed using a Zorbax SB C18, (150 x 4.6 mm i.d., 5 microm) reversed-phase column under gradient conditions with a mobile phase containing 2 mm ammonium acetate buffer (pH 6.8) and acetonitrile. MS detection was by electrospray ionization with multiple reaction monitoring in the positive ion mode for estramustine phosphate, estromustine and estramustine, and in the negative ion mode for estrone and estradiol. The limit of quantitation was 10 ng/mL for estramustine phosphate, 3 ng/mL for estromustine, estramustine and estrone and 30 ng/mL for estradiol. Linearity was verified from these LLOQs up to about 4000 ng/mL for the parent drug and 2000 ng/mL for the metabolites. Inter-day precision and accuracy values were all less than 15%. This assay was applied successfully to the routine analysis of human plasma samples collected in cancer patients administered estramustine phosphate intravenously.  相似文献   

9.
An on-line pre-concentration method for the analysis of five benzoylureas (diflubenzuron, triflumuron, hexaflumuron, lufenuron and flufenoxuron) in ground water samples was evaluated using two C(18) columns, and fluorescence detection after photochemical induced fluorescence (PIF) post-column derivatization. The trace enrichment was carried out with 35 mL of ground water modified with 15 mL of MeOH on a 50 mm x 4.6 mm I.D. first enrichment column (C-1) packed with 5 microm Hypersil Elite C(18). Retention properties of pesticides and humic acids usually contained in ground water were studied on C-1 at concentration levels ranging between 0.04 and 14.00 microg/L in water samples. The results obtained in this study show that the pesticides are pre-concentrated in the first short column while the humic acids contained in the ground water samples are eluted to waste. Pesticides recoveries ranged between 92.3 and 109.5%. The methodology proposed was used to determine benzoylureas in ground water samples at levels lower than 0.1 microg/L (maximum levels established by the European Union).  相似文献   

10.
As a continuation of our efforts to improve our high-flow on-line bioanalytical approach for high-throughput quantitation of drugs and metabolites in biological matrices by high-performance liquid chromatography (LC) and tandem mass spectrometry (MS/MS), we have developed a ternary-column on-line LC/MS/MS system with dual extraction columns used in parallel for purification and an analytical column for analysis. The advantage of the dual extraction column system is that sample analysis can take place in one of the extraction columns while the other column is being equilibrated. Thus, the equilibration time does not add to the run time, hence shortening the injection cycle time and increasing the sample throughput. Moreover, the use of two extraction columns in parallel increases the number of samples that can be injected before the system fails due to an overused extraction column. Such a system has successfully been used to develop and validate a positive ion electrospray LC/MS/MS bioanalytical method for the quantitative determination of a guanidine-containing drug candidate in rat plasma. The system used for this work utilized two Oasis HLB extraction columns (1 x 50 mm, 30 microm), one C18 analytical column (3.9 x 50 mm, 5 microm), a ten-port switching value and a tandem mass spectrometer. The on-line analysis was accomplished by the direct injection of 10 microL of the sample, obtained by mixing a rat plasma sample 1:1 with an aqueous internal standard solution. Selected reaction monitoring (SRM) was utilized for the detection of the analyte and internal standard. The standard curve range was 1.00-200 ng/mL. The intra- and inter-day precision and accuracy were within 6.6%. The on-line purification step lasted for only 0.3 min and total run time was only 1.6 min.  相似文献   

11.
Quantification of bradykinin peptides in limited amounts of rat muscle tissue dialysate has been performed using a packed capillary LC-ESI-TOF-MS method. The micro dialysate samples (450 microL) with added internal standard were loaded onto a 1 mm x 5 mm loading column packed with 5 microm Kromasil C18 particles by a carrier solution of 0.1% formic acid in ACN/water (5:95, v/v) at a flow rate of 250 microL/min for online preconcentration of the analytes. Back-flushed elution onto a 150 mm x 0.5 mm Zorbax C18 column packed with 5 microm particles was conducted using a linear solvent ACN/H2O gradient containing 0.1% formic acid. (Tyr8)-bradykinin was used as an internal standard and was added to the dialysis sample prior to injection. Baseline separation of bradykinin, arg-bradykinin and (tyr8)-bradykinin was achieved within 10 min. Positive ESI was performed in the m/z range of 200-1300. The method was validated in the range 0.2-1.0 ng/mL dialysate, yielding correlation coefficients of 0.995 and 0.990 for bradykinin and arg-bradykinin, respectively. The within-assay and between-assay precisions were between 4.3-9.6% and 6.2-10.6%, respectively. Both arg-bradykinin and bradykinin were detected in dialysate from rat muscle tissue, at concentrations of 0.1 and 0.4 ng/mL for bradykinin and arg-bradykinin, respectively, confirming the presence of arg-bradykinin in rat muscles.  相似文献   

12.
A simple and sensitive method for the determination of nitrendipine in rat plasma was developed using high-performance liquid chromatography (HPLC). The procedure involves extraction of nitrendipine in dichloromethane/sodium hydroxide, followed by reversed phase HPLC using a Waters, Spherisorb ODS2 (250 x 4.6 mm, 5 microm) column and UV detection at 238 nm. The retention times of nitrendipine and internal standard (felodipine) were 5.0 min and 7.5 min, respectively. The calibration curves were linear over the range of 5 ng/mL (lower limit of quantification, LOQ) to 200 ng/mL for nitrendipine. The intra- and inter-day coefficients of variation for all criteria of validation were less than 15% over the linearity range. The sensitivity and precision of the method were within the accepted limits (< 15%) throughout the validation period. The present method was also successfully applied for the study of plasma pharmacokinetics of nitrendipine loaded solid lipid nanoparticles (SLN) in rats.  相似文献   

13.
A simple HPLC method was developed for determination of quercitrin and isoquercitrin in rat plasma. Reversed-phase HPLC was employed for the quantitative analysis using kaempferol-3-O-beta-D-glucopyranoside-7-O-alpha-L-rhamnoside as an internal standard. Following extraction from the plasma samples with ethyl acetate-isopropanol (95:5, v/v), these two compounds were successfully separated on a Luna C(18) column (250 x 4.6 mm, 5 microm) with isocratic elution of acetonitrile-0.5% aqueous acetic acid (17:83, v/v) as the mobile phase. The flow-rate was set at 1 mL/min and the eluent was detected at 350 nm for both quercitrin and isoquercitrin. The method was linear over the studied ranges of 50-6000 and 50-5000 ng/mL for quercitrin and isoquercitrin, respectively. The intra- and inter-day precisions of the analysis were better than 13.1 and 13.2%, respectively. The lower limits of quantitation for quercitrin and isoquercitrin in plasma were both of 50 ng/mL. The mean extraction recoveries were 73 and 61% for quercitrin and isoquercitrin, respectively. The validated method was successfully applied to pharmacokinetic studies of the two analytes in rat plasma after the oral administration of Hypericum japonicum thunb. ethanol extract.  相似文献   

14.
Ultra performance LC (UPLC) was evaluated as an efficient screening approach to facilitate method development for drug candidates. Three stationary phases were screened: C-18, phenyl, and Shield RP 18 with column dimensions of 150 mm x 2.1 mm, 1.7 microm, which should theoretically generate 35,000 plates or 175% of the typical column plate count of a conventional 250 mm x 4.6 mm, 5 microm particle column. Thirteen different active pharmaceutical ingredients (APIs) were screened using this column set with a standardized mobile-phase gradient. The UPLC method selectivity results were compared to those obtained for these compounds via methods developed through laborious trial and error screening experiments using numerous conventional HPLC mobile and stationary phases. Peak capacity was compared for columns packed with 5 microm particles and columns packed with 1.7 microm particles. The impurities screened by UPLC were confirmed by LC/MS. The results demonstrate that simple, high efficiency UPLC gradients are a feasible and productive alternative to more conventional multiparametric chromatographic screening approaches for many compounds in the early stages of drug development.  相似文献   

15.
A sensitive and selective liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of sodium cromoglycate (SCG) in human plasma after a nasal dose of 10.4 mg sodium cromoglycate nasal spray, using pravastatin sodium as the internal standard. The method was validated over a linear range of 0.300-20.0 ng/mL. SCG and I.S. were extracted from 1.0 mL of heparinized plasma by C(18) solid-phase extraction cartridges using methanol as eluting solvent. The dried residue was reconstituted with 100 microL of mobile phase, and 10 microL was injected onto the LC-MS/MS system. Chromatographic separation was achieved on a C(18) column (250 x 4.6 mm i.d., 5 microm particle size) with a mobile phase of methanol-acetonitrile-water (containing 2 mmol/L ammonium acetate; 42.5:42.5:15, v/v/v) at a flow rate of 0.4 mL/min. The analytes were detected with a triple quad LC-MS/MS using ESI with positive ionization. Ions monitored in the multiple reaction monitoring mode were m/z 469.0 (precursor ion) to m/z 245.0 (product ion) for SCG and m/z 447.2 (precursor ion) to m/z327.1 (product ion) for pravastatin sodium (internal standard) The average recovery of SCG from human plasma was 94.88% and the lower limit of quantitation was 0.3 ng/mL. Results from a 3-day validation study demonstrated excellent precision and accuracy across the calibration range of 0.3-20 ng/mL. The method was successfully applied to the pharmacokinetic study of SCG in healthy Chinese volunteers. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, 5-(2-hydroxy-5-nitrophenylazo)thiorhodanine (HNATR) was synthesized. A new method for the simultaneous determination of palladium, platinum, rhodium and gold ions as metal-HNATR chelates was developed using a rapid analysis column high performance liquid chromatography equipped with on-line solid phase extraction technique. The samples (Water, human urine, geological samples and soil) were digested by microwave acid-digestion. The palladium, platinum, rhodium and gold ions in the digested samples were pre-column derivatized with HNATR to form colored chelates. The Pd-HNATR, Pt-HNATR, Rh-HNATR and Au-HNATR chelates can be absorbed onto the front of the enrichment column when they were injected into the injector and sent to the enrichment column [Zorbax Stable Bound, 10 mm x 4.6 mm, 1.8 microm] with a buffer solution of 0.05 mol L(-1) phosphoric acid as mobile phase. After the enrichment had finished, by switching the six ports switching valve, the retained chelates were back-flushed by mobile phase and travelling towards the analytical column. These chelates separation on the analytical column [Zorbax Stable Bound, 10 mm x 4.6 mm, 1.8 microm] was satisfactory with 72% acetonitrile (containing 0.05 mol L(-1) of phosphoric acid and 0.1% of Triton X-100) as mobile phase. The palladium, platinum, rhodium and gold chelates were separated completely within 2.5 min. Compared to the routine chromatographic method, more then 80% of separation time was shortened. By on-line solid phase extraction system, a large volume of sample (10 mL) can be injected, and the sensitivity of the method was greatly improved. The detection limits (S/N=3, the sample injection volume is 10 mL) of palladium, platinum, rhodium and gold in the original samples reaches 1.4, 1.8, 2.0 and 1.2 ng L(-1), respectively. The relative standard deviations for five replicate samples were 2.4-3.6%. The standard recoveries were 88-95%. This method was applied to the determination of palladium, platinum, rhodium and gold in human urine, water and geological samples with good results.  相似文献   

17.
As a prerequisite to the determination of pharmacokinetic parameters of icariin in rats, an HPLC method using UV detection was developed and validated. Icariin and the internal standard, quercetin, were extracted from plasma samples using ethyl acetate after acidification with 0.05 mol/L NaH2PO4 solution (pH 5.0). Chromatographic separation was achieved on an Agilent XDB Cls column (250 x 4.6 mm id, 5 microm) equipped with a Shim-pack GVP-ODS C18 guard column (10 x 4.6 mm id, 5 microm) using a mobile phase of ACN/water/acetic acid (31:69:0.4 v/v/v) at a flow rate of 1.0 mL/ min. Detection was at 277 nm. The calibration curve was linear from 0.05 to 100.0 microg/mL with 0.05 microg/mL as the lower LOQ (LLOQ) in plasma. The intra- and interday precisions in terms of RSD were lower than 5.7 and 7.8% in rat plasma, respectively. The accuracy in terms of relative error (RE) ranged from -1.6 to 3.2%. The extraction recoveries of icariin and quercetin were 87.6 and 80.1%, respectively. The main pharmacokinetic parameters for rats were determined after a single intravenous administration of 10 mg/kg icariin: t1/2, 0.562 +/- 0.200 h; AUC0-infinity, 8.73 +/- 2.23 microg x h/mL; CLToT, 20.10 +/- 5.80 L/kg x h; Vz, 1.037 +/- 0.631 L/kg; MRT0-infinity, 0.134 +/- 0.040 h; and Vss, 0.170 +/- 0.097 L/kg.  相似文献   

18.
A selective, rapid and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is described for assay of donepezil in human plasma using escitalopram as an internal standard. Chromatographic separation was achieved on a Betabasic-C(8), 5 microm, 100 x 4.6 mm column using methanol:water:formic acid (90:9.97:0.03, v/v/v) as mobile phase. Detection of donepezil and internal standard was achieved by ESI MS/MS in positive ion mode using 380.20/91.10 and 325.13/262.00 transitions, respectively. The linearity over the concentration range of 0.15-50 ng/mL for donepezil was obtained and the lower limit of quantification was 0.15 ng/mL. For each level of quality control samples, inter-day and intra-day precisions (RSD) were < or =8.92 and 10.35% and accuracy (%RE) were < or =7.33% and 9.33%, respectively. The recovery was more than 88.50% for both donepezil and internal standard by solid-phase extraction, eliminating evaporation and reconstitution steps.  相似文献   

19.
A simple high-performance liquid chromatographic method for the determination of doxazosin in human plasma was developed and validated. Prazosin was used as internal standard. After extraction twice with ethyl acetate, chromatographic separation of doxazosin in human plasma was carried out using a reversed-phase Apollo C18 column (250 x 4.6 mm, 5 microm) with mobile phase of methanol-acetonitrile-0.04 m disodium hydrogen orthophosphate (22:22:56, v/v/v) adjusted to pH 4.9 with 0.9 m phosphoric acid and quantified by fluorescence detection operated with an excitation wavelength of 246 nm and an emission wavelength of 389 nm. The lower limit of quantification (LLOQ) of this assay was 1 ng/mL using 500 microL human plasma. Linearity was established over the range 1-25 ng/mL (r2 > 0.9994). The intra- and inter-day accuracy ranged from 90.5 to 104.4% and the coefficient of variation were not more than 8.6% for both intra- and inter-day precision, over the range of the calibration curve. The absolute recoveries of doxazosin and prazosin from human plasma were more than 91%. Doxazosin demonstrated acceptable short-term, long-term and freeze-thaw stability in human plasma. The assay has been successfully applied to plasma sample ana-lysis for pharmacokinetic study.  相似文献   

20.
A rapid and simple reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been developed for determination of myrislignan in rat plasma after intravenous administration. The analytes extracted from plasma samples by solid-phase extraction were successfully carried out on a Diamonsiltrade mark ODS C(18) column (250 x 4.6 mm i.d., 5 microm) with an RP(18) guard column (8 x 4.6 mm i.d., 5 microm) and a mobile phase of MeOH-H(2)O (4:1, v/v). The UV detector was set at a single wavelength of 270 nm. The linear ranges of the standard curves were 0.5-30.0 microg/mL with the correlation coefficients greater than 0.9992. The lower limits of detection and quantification were 0.1 and 0.3 microg/mL for myrislignan. Intra- and inter-day precisions were 2.4-7.5 and 1.3-5.7%, respectively. The extraction recovery from plasma was more than 90%. This assay method has been successfully used to study the pharmacokinetics of myrislignan in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号