首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper is an extension of the previous work of Chui et al. (2015) [4], not only from numeric data to include non-numeric data as in that paper, but also from undirected graphs to directed graphs (called digraphs, for simplicity). Besides theoretical development, this paper introduces effective mathematical tools in terms of certain data-dependent orthogonal systems for function representation and analysis directly on the digraphs. In addition, this paper also includes algorithmic development and discussion of various experimental results on such data-sets as CORA, Proposition, and Wiki-votes.  相似文献   

2.
We present a general framework for studying harmonic analysis of functions in the settings of various emerging problems in the theory of diffusion geometry. The starting point of the now classical diffusion geometry approach is the construction of a kernel whose discretization leads to an undirected graph structure on an unstructured data set. We study the question of constructing such kernels for directed graph structures, and argue that our construction is essentially the only way to do so using discretizations of kernels. We then use our previous theory to develop harmonic analysis based on the singular value decomposition of the resulting non-self-adjoint operators associated with the directed graph. Next, we consider the question of how functions defined on one space evolve to another space in the paradigm of changing data sets recently introduced by Coifman and Hirn. While the approach of Coifman and Hirn requires that the points on one space should be in a known one-to-one correspondence with the points on the other, our approach allows the identification of only a subset of landmark points. We introduce a new definition of distance between points on two spaces, construct localized kernels based on the two spaces and certain interaction parameters, and study the evolution of smoothness of a function on one space to its lifting to the other space via the landmarks. We develop novel mathematical tools that enable us to study these seemingly different problems in a unified manner.  相似文献   

3.
4.
5.
6.
We consider the normalized Laplace operator for directed graphs with positive and negative edge weights. This generalization of the normalized Laplace operator for undirected graphs is used to characterize directed acyclic graphs. Moreover, we identify certain structural properties of the underlying graph with extremal eigenvalues of the normalized Laplace operator. We prove comparison theorems that establish a relationship between the eigenvalues of directed graphs and certain undirected graphs. This relationship is used to derive eigenvalue estimates for directed graphs. Finally we introduce the concept of neighborhood graphs for directed graphs and use it to obtain further eigenvalue estimates.  相似文献   

7.
《Discrete Mathematics》2022,345(7):112893
In this paper, we study the Reconstruction Conjecture for finite simple graphs. Let Γ and Γ be finite simple graphs with at least three vertices such that there exists a bijective map f:V(Γ)V(Γ) and for any vV(Γ), there exists an isomorphism ?v:Γ?vΓ?f(v). Then we define the associated directed graph Γ?=Γ?(Γ,Γ,f,{?v}vV(Γ)) with two kinds of arrows from the graphs Γ and Γ, the bijective map f and the isomorphisms {?v}vV(Γ). By investigating the associated directed graph Γ?, we study when are the two graphs Γ and Γ isomorphic.  相似文献   

8.
Given k directed graphs G1,…,Gk the Ramsey number R(G1,…, Gk) is the smallest integer n such that for any partition (U1,…,Uk) of the arcs of the complete symmetric directed graph Kn, there exists an integer i such that the partial graph generated by U1 contains G1 as a subgraph. In the article we give a necessary and sufficient condition for the existence of Ramsey numbers, and, when they exist an upper bound function. We also give exact values for some classes of graphs. Our main result is: R(Pn,….Pnk-1, G) = n1…nk-1 (p-1) + 1, where G is a hamltonian directed graph with p vertices and Pni denotes the directed path of length nt  相似文献   

9.
In this paper we study the reverse mathematics of two theorems by Bonnet about partial orders. These results concern the structure and cardinality of the collection of initial intervals. The first theorem states that a partial order has no infinite antichains if and only if its initial intervals are finite unions of ideals. The second one asserts that a countable partial order is scattered and does not contain infinite antichains if and only if it has countably many initial intervals. We show that the left to right directions of these theorems are equivalent to ACA0ACA0 and ATR0ATR0, respectively. On the other hand, the opposite directions are both provable in WKL0WKL0, but not in RCA0RCA0. We also prove the equivalence with ACA0ACA0 of the following result of Erdös and Tarski: a partial order with no infinite strong antichains has no arbitrarily large finite strong antichains.  相似文献   

10.
We prove that almost every digraph D2–in, 2–out is Hamiltonian. As a corollary we obtain also that almost every graph G4–out is Hamiltonian. © 2000 John Wiley & Sons, Inc. Random Struct. Alg., 16: 369–401, 2000  相似文献   

11.
12.
13.
Romeo Rizzi 《Discrete Mathematics》2006,306(13):1390-1404
We consider graphs which contain both directed and undirected edges (partially directed graphs). We show that the problem of covering the edges of such graphs with a minimum number of edge-disjoint directed paths respecting the orientations of the directed edges is polynomially solvable. We exhibit a good characterization for this problem in the form of a min-max theorem. We introduce a more general problem including weights on possible orientations of the undirected edges. We show that this more general weighted formulation is equivalent to the weighted bipartite b-factor problem. This implies the existence of a strongly polynomial algorithm for this weighted generalization of Euler's problem to partially directed graphs (compare this with the negative results for the mixed Chinese postman problem). We also provide a compact linear programming formulation for the weighted generalization that we propose.  相似文献   

14.
We show that the number of points with pairwise different sets of neighbors in a graph is O(2r/2), where r is the rank of the adjacency matrix. We also give an example that achieves this bound. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
16.
An antimagic labeling of an undirected graph G with n vertices and m edges is a bijection from the set of edges of G to the integers {1, …, m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it admits an antimagic labeling. In (N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston, 1990, pp. 108–109), Hartsfield and Ringel conjectured that every simple connected graph, other than K2, is antimagic. Despite considerable effort in recent years, this conjecture is still open. In this article we study a natural variation; namely, we consider antimagic labelings of directed graphs. In particular, we prove that every directed graph whose underlying undirected graph is “dense” is antimagic, and that almost every undirected d‐regular graph admits an orientation which is antimagic. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 219–232, 2010  相似文献   

17.
The study of a mixed graph and its Laplacian matrix have gained quite a bit of interest among the researchers. Mixed graphs are very important for the study of graph theory as they provide a setup where one can have directed and undirected edges in the graph. In this article we present a more general structure, namely the weighted directed graphs and supply appropriate generalizations of several existing results for mixed graphs related to singularity of the corresponding Laplacian matrix. We also prove many new combinatorial results relating the Laplacian matrix and the graph structure.  相似文献   

18.
In this paper the concept of convexity in directed graphs is described. It is shown that the set of convex subgraphs of a directed graph G partially ordered by inclusion forms a complete, semimodular, A-regular lattice, denoted ?G. The lattice theoretic properties of the convex subgraph lattice lead to inferences about the path structure of the original graph G. In particular, a graph factorization theorem is developed. In Section 4, several graph homomorphism concepts are investigated in relation to the preservation of convexity properties. Finally we characterize an interesting class of locally convex directed graphs.  相似文献   

19.
A group G of permutations of a set Ω is primitive if it acts transitively on Ω, and the only G-invariant equivalence relations on Ω are the trivial and universal relations. A digraph Γ is primitive if its automorphism group acts primitively on its vertex set, and is infinite if its vertex set is infinite. It has connectivity one if it is connected and there exists a vertex α of Γ, such that the induced digraph Γ∖{α} is not connected. If Γ has connectivity one, a lobe of Γ is a connected subgraph that is maximal subject to the condition that it does not have connectivity one. Primitive graphs (and thus digraphs) with connectivity one are necessarily infinite.  相似文献   

20.
We show that almost surely the rank of the adjacency matrix of the Erd?s‐Rényi random graph G(n,p) equals the number of nonisolated vertices for any c ln n/np ≤ 1/2, where c is an arbitrary positive constant larger than 1/2. In particular, the adjacency matrix of the giant component (a.s.) has full rank in this range. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号