首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ignition and combustion characteristics of compound of magnesium and boron   总被引:1,自引:0,他引:1  
Compound of magnesium and boron (MB) is promising to be the ideal substitute of amorphous boron which is usually used as the raw material of boron-based fuel-rich propellants. In this study, the physical characteristics of MB and amorphous boron were studied by the scanning electron microscope, X-ray diffraction and X-ray photoelectron spectroscopy. The thermal reaction characteristics and the ignition and combustion characteristics were investigated through TG/DSC experiments and laser ignition experiments. The experimental results show that the MB particle is much more regular than amorphous boron, which favors for the preparation of boron-based fuel-rich propellants. Magnesium exists in the form of elementary substance, and boron oxide is produced during the preparation of MB which results in the longer ignition delay time of MB. The content of magnesium and the pressure have effects on the MB combustion performance. Although the combustion of magnesium can provide much heat for the combustion of boron, MB with moderate content of magnesium shows the best combustion performance. On the contrast, the ignition delay time of MB is independent on the content of magnesium and the pressure.  相似文献   

2.
Boron Neutron Capture Therapy (BNCT) is a promising therapy for the cure of diffuse tumors. The successful clinical application of BNCT requires finding new boron-based compounds suitable for an efficient 10B delivery to the cancerous tissues. The purpose of this work is to synthesize borosilicate nanoparticles by a sol?Cgel recipe, and to functionalize them with folic acid in order to promote their capture by the tumor cells. Whereas sol?Cgel is a promising technique for the synthesis of nanoparticles, in case of borosilicate systems this approach is affected by significant boron loss during preparation. Here we show that functionalization of borosilicate nanoparticles with folic acid can reduce the boron loss. Moreover, preliminary biocompatibility tests indicate that functionalization strongly changes the reactivity of NPs towards blood cells, so favouring the potential use of these materials for clinical applications.  相似文献   

3.
Linear nanotubular boron-carbon heterojunctions are systematically constructed and studied with the help of ab initio total energy calculations. The structural compatibility of the two classes of materials is shown, and a simple recipe that determines all types of stable linear junctions is illustrated in some detail. Our results also suggest the compatibility of various technologically interesting types of nanotubular materials, leading to different types of nanotubular compound materials, and pointing out the possibility of wiring nanotubular devices within heterogeneous nanotubular networks.  相似文献   

4.
Leakage of volatile organic compounds (VOCs) is one of the most severe industrial problems, because it can cause environmental pollution, global warming, fire, and explosion. Hence, the visualization of leakage is an essential technology to detect it at an early stage. Molecular crystals, fluorescence color of which can be changed by the exposure to VOCs could potentially serve as the sensing materials for realizing rapid and facile VOC detection. However, these materials usually require harsh conditions, such as heating or a vacuum, to recover their initial phases for reuse. Therefore, it remains a challenge to obtain completely reversible sensing systems without such energy-consuming recycling processes. Herein, the reversible color change of fluorescence from the crystals of a propeller-shaped boron β-diketiminate complex is reported. The complex was crystallized in distinct crystalline phases having different luminescent colors. Importantly, these phases were interconverted very rapidly (time constant <60 s) and repeatedly upon exposure to the vapors of the appropriate VOCs. The small energy differences between conformers of the complex could lead to this pseudopolymorphic behavior. This finding could be applied for the development of further eco-friendly reversible sensing materials based on four-coordinated boron complexes.  相似文献   

5.
Computational investigations were carried out to probe the potential of several dicoordinate, singly base-stabilized borylenes of the form [L→BR] (L=neutral Lewis base) in dinitrogen binding. The calculated reaction free energies and activation barriers associated with the formation of mono- and diborylene-N2 adducts suggest the presence of thermally surmountable kinetic barriers towards their possible isolation. Our results show that the exergonicity of dinitrogen activation and fixation is linearly dependent on the natural charge at the boron center, which can be tuned to design novel boron-based compounds with potential applications to small-molecule activation. EDA-NOCV analysis reveals strong binding of dinitrogen to these base-stabilized borylenes.  相似文献   

6.
Two kinds of planarized phenyldithienylboranes, which contain (CH3)2C- or CH2-bridging moieties, were synthesized. The difference of the bridging moieties affects their packing structures and photophysical properties. In particular, the (CH3)2C-bridged derivative exhibits a large Stokes shift, unusual for such planarized compounds, that results from a large structural relaxation in the excited state. A series of π-extended derivatives was synthesized, among which a p-(diphenylamino)phenyl-substituted derivative shows large solvatochromism in the fluorescence spectra, while maintaining high quantum yields even in polar solvents. The Lewis acidity of the phenyldithienylborane derivatives was also assessed by titration with pyridine. The Lewis acidity of the boron center is affected not only by the difference in the steric bulk of the bridging moieties, but also by the electronic effect of the substituents introduced at remote positions relative to the boron atom. These results demonstrate the characteristic features of planarized phenyldithienylboranes as building blocks for boron-based π-electron materials.  相似文献   

7.
Boron solids exhibit a fascinating geometric and electronic structure. The properties of alpha-rhombohedral boron can be significantly changed by the addition of other atomic constituents. It is found that Pauling's bond valence principle plays an important role in designing boron-rich semiconductors. We have designed the novel boron-rich phases B12N2X (X = Zn, Cd, Be) with the boron carbide type structure by combining Pauling's bond valence principle with first-principles techniques. Their energy gaps, bulk moduli, microhardnesses, and total energies have been calculated. The results show that they are new superhard materials and potential semiconductors. It has been elucidated why B12N2 is metallic but B12N2Be is a semiconductor. This should open up new potential areas for predicting novel boron-rich compounds for industrial applications.  相似文献   

8.
We present a detailed study of the growth mechanism of single-walled boron nitride nanotubes synthesized by laser vaporization, which is the unique route known to the synthesis of this kind of tube in high quantities. We have performed a nanometric chemical and structural characterization by transmission electron microscopy (high-resolution mode (HRTEM) and electron energy loss spectroscopy) of the synthesis products. Different boron-based compounds and other impurities were identified in the raw synthesis products. The results obtained by the TEM analysis and from the synthesis parameters (temperature, boron, and nitrogen sources) combined with phase diagram analysis to provide identification of the fundamental factors determining the nanotube growth mechanism. Our experiments strongly support a root-growth model that involves the presence of a droplet of boron. This phenomenological model considers the solubility, solidification, and segregation phenomena of the elements present in this boron droplet. In this model, we distinguish three different steps as a function of the temperature: (1) formation of the liquid boron droplet from the decomposition of different boron compounds existing in the hexagonal boron nitride target, (2) reaction of these boron droplets with nitrogen gas present in the vaporization chamber and recombination of these elements to form boron nitride, and (3) incorporation of the nitrogen atoms at the root of the boron particle at active reacting sites that achieves the growth of the tube.  相似文献   

9.
We constructed a truly nanotubular structure model of titania nanotubes based on delaminated anatase with realistic dimensions replicating those observed in experiments. It is shown that this nanotubular structure based on delaminated anatase produces an XRD pattern in excellent agreement with the observed spectrum and that the tube axis is along the [0 1 0] direction of the anatase structure. Preserving the atomic registry of delaminated anatase between adjacent layers is essential along the tube axis but unnecessary along the circumference. These understandings provide detailed information on the structure and morphology of hydrothermally synthesized titania nanotubes. The findings will help discern the complex surface chemistry of these materials.  相似文献   

10.
Since the discovery of the first drum-like CoB16- complex, metal-doped drum-like boron nanotubular structures have been investigated with various metal dopants and different tubular size, forming a new class of novel nanostructures. The CoB16- cluster was found to be composed of a central Co atom coordinated by two fused B8 rings in a tubular structure, representing the potential embryo of metal-filled boron nanotubes and providing opportunities to design one-dimensional metal-boron nanostructures. Here we report improved photoelectron spectroscopy and a more in-depth electronic structure analysis of CoB16-, providing further insight into the chemical bonding and stability of the drum-like doped boron tubular structures. Most interestingly, we find that the central Co atom has an unusually low oxidation state of ?1 and neutral CoB16 can be viewed as a charge transfer complex (Co-@BB16+), suggesting both covalent and electrostatic interactions between the dopant and the boron drum.  相似文献   

11.
Interlocked chiral nanotubes assembled from quintuple helices   总被引:6,自引:0,他引:6  
Homochiral helical chains were rationally synthesized from C2-symmetric 1,1-binaphthyl-6,6'-bipyridine ligands and linear metal-connecting points, Ni(acac)2. Five such homochiral helices associate in parallel to form nanotubes of 2 x 2 nm in dimensions which further intertwine to form periodically ordered, interlocked nanotubular architectures that possess nanometer-scale open channels and have high affinity for aromatic molecules. Chiral crown ethers have also been successfully incorporated into the walls of these nanotubes, which promises to lead to novel chiral zeolitic materials applicable in enantioselective processes.  相似文献   

12.
An axially chiral dihydroborepine with a binaphthyl backbone and a C(6)F(5) substituent at the boron atom was prepared by transmetalation from the corresponding tin precursor. This novel motif was structurally characterized by X-ray diffraction analysis as its THF and its PhCN Lewis acid/base complex. (1)H NMR measurements at variable temperatures of the former adduct revealed a remarkable dynamic behavior in solution. Several more Lewis pairs with oxygen, nitrogen, carbon, and phosphorus σ-donors were synthesized and analyzed by multinuclear NMR spectroscopy. The determination of the borane's Lewis acidity with the Gutmann-Beckett method attests its substantial Lewis acidity [85% with Et(3) PO as well as 74% with Ph(3) PO relative to the parent B(C(6)F(5))(3)]. Representative examples of Si-H bond activation (carbonyl reduction and dehydrogenative Si-O coupling) are included, demonstrating the chemical stability and the synthetic potential of the new chiral boron-based Lewis acid.  相似文献   

13.
Porous boron carbonitride nanotubular fibers with BCN stoichiometry and homogeneous B, C, and N species distribution were fabricated via the CVD method. Spatially resolved cathodoluminescence measurements on individual nanostructures revealed intense ultraviolet emission centered at 319 nm, suggesting the characteristics of a semiconductor with a band gap of 3.89 eV. It is believed that the present nanostructures may have a variety of applications in ultraviolet optical devices, hydrogen storage systems, and field emission apparatus.  相似文献   

14.
Boron compound BOMes2 containing an internal B−O bond undergoes highly efficient photoisomerization, followed by sequential structural transformations, resulting in a rare eight-membered B, O-heterocycle (S. Wang, et al. Org. Lett. 2019 , 21, 5285–5289). In this work, the detailed reaction mechanisms of such a unique carbonyl-supported tetracoordinate boron system in the first excited singlet (S1) state and the ground (S0) state were investigated by using the complete active space self-consistent field and its second-order perturbation (MS-CASPT2//CASSCF) method combined with time-dependent density functional theory (TD-DFT). Moreover, an imine-substituted tetracoordinated organic boron system (BNMes2) was selected for comparative study to explore the intrinsic reasons for the difference in reactivity between the two types of compounds. Steric factor was found to influence the photoisomerization activity of BNMes2 and BOMes2. These results rationalize the experimental observations and can provide helpful insights into understanding the excited-state dynamics of heteroatom-doped tetracoordinate organoboron compounds, which facilitates the rational design of boron-based materials with superior photoresponsive performances.  相似文献   

15.
16.
Hundreds of billions of commensal microorganisms live in and on our bodies, most of which colonize the gut shortly after birth and stay there for the rest of our lives. In animal models, bidirectional communications between the central nervous system and gut microbiota (Gut–Brain Axis) have been extensively studied, and it is clear that changes in microbiota composition play a vital role in the pathogenesis of various neurodevelopmental and neurodegenerative disorders, such as Autism Spectrum Disorder, Alzheimer’s disease, Parkinson’s disease, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, anxiety, stress, and so on. The makeup of the microbiome is impacted by a variety of factors, such as genetics, health status, method of delivery, environment, nutrition, and exercise, and the present understanding of the role of gut microbiota and its metabolites in the preservation of brain functioning and the development of the aforementioned neurological illnesses is summarized in this review article. Furthermore, we discuss current breakthroughs in the use of probiotics, prebiotics, and synbiotics to address neurological illnesses. Moreover, we also discussed the role of boron-based diet in memory, boron and microbiome relation, boron as anti-inflammatory agents, and boron in neurodegenerative diseases. In addition, in the coming years, boron reagents will play a significant role to improve dysbiosis and will open new areas for researchers.  相似文献   

17.
In order to quantitatively examine the activation level for covalent-organic frameworks (COFs) on gas adsorption, the effect of impurities on nitrogen uptakes in a series of boron-based COFs was investigated by grand canonical Monte Carlo simulation (GCMC), based on accurate force fields derived from high-level B2PLYP-D3/def2-TZVPP calculation. The conformations and the type of impurities were found to have little effect on the gas uptakes, but the quantity of impurities plays a crucial role on N2 loadings. More important, the terms of “activation mass ratio” and “activation volume ratio” were defined to estimate the realistic pore volume ratio for DBA-COFs (DBA=π-conjugated dehydro-benzoannulene), and predict the potential of gas uptakes in DBA-COFs. Our approach for DBA-COFs materials could also be adopted for high-throughput screening of a much vaster number of porous materials, to evaluate their impurities content and predict their adsorption potential.  相似文献   

18.
A novel nanocomposite TiO(2) film consisting of a bamboo leaf-like nano TiO(2) layer on a nanotubular TiO(2) arrays surface is synthesized by electrochemical anodization with wet chemical pretreatment; it shows almost three times higher activity as compared to that of nanotubular TiO(2) arrays alone.  相似文献   

19.
An efficient method to access diversely substituted borylated dendralenes from simple and readily available materials is reported. This method is based on a multicomponent copper‐catalyzed allylboration of alkynes with diboron and a 1,4‐dibromo‐2‐butene which provides bromo‐ and boron‐substituted skipped dienes with a remarkable chemo‐, stereo‐, and regioselectivity. These products can be easily transformed into dendralenic organoboronates, which display an extremely versatile reactivity as demonstrated by novel selective transformations.  相似文献   

20.
Nanoparticles of a novel boron-based carbazole derivative have been reported. They exhibit efficient green fluorescence, aggregation induced ratiometric fluorescence change and green/blue fluorescent switching to sense VOCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号