首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Marine algal toxins of the okadaic acid group can occur as fatty acid esters in blue mussels, and are commonly determined indirectly by transformation to their parent toxins by alkaline hydrolysis. Some data are available regarding the identity of the fatty acid esters, mainly of palmitic acid (16:0) derivatives of okadaic acid (OA), dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2). Other fatty acid derivatives have been described, but with limited mass spectral data. In this paper, the mass spectral characterization of the [M-H](-) and [M+Na](+) ions of 16 fatty acid derivatives of each of OA, DTX1 and DTX2 is presented. The characteristic fragmentation of [M+Na](+) ions of OA analogues provided a useful tool for identifying these, and has not been described previously. In addition, a set of negative ion multiple reaction monitoring (MRM) methods was developed for direct determination of 16 fatty acid esters of OA, 16 fatty acid esters of DTX1 and 16 fatty acid esters of DTX2 in shellfish extracts. The MRM methods were employed to study the profiles of fatty acid esters of OA analogues in blue mussels and to compare these with fatty acid ester profiles reported for other groups of marine algal toxins.  相似文献   

2.
In bivalve mollusks from the Portuguese coast contaminated by diarrhetic shellfish poisoning (DSP), most of the parent toxins, okadaic acid (OA) or dinophysistoxin-2 (DTX2), are found esterified, and toxicity assessment is only performed after an alkaline hydrolysis step to recover the parent molecules in their free form. The presence of 7-O-acyl esters with fatty acids (FAs) has already been confirmed previously in Mytilus galloprovincialis and Donax trunculus samples. This paper reports the presence of acyl esters in a wider range of estuarine and offshore bivalve species found by direct analysis in LC-MS. The total of acyl esters found in each species represented the percentages commonly found by hydrolysis in those species in previous years, justifying the majority of the esters commonly found in shellfish. This implies that any diol esters remaining after digestion of toxic microalgae would represent only a minor contribution to the ester's contents. Esters with C14:0, C16:0, C16:1, C20:5 and C22:6 FAs were the most abundant, followed by esters with C18:0, C18:1, C18:2, C18:3 and C18:4. This is the first report of OA and DTX2 esters with odd FAs: C15:0, C17:0, C17:1, and probably a branched FA: iso-C16:0. Esters with iso-C16:0 where found in high percentages particularly in two species of estuarine clams, where they represented 13-34% of total esters found. Esters were also found in plankton, predominantly with C16:0. Total esters in plankton were not higher than 10%, not enough to justify per se the high levels found in bivalves.  相似文献   

3.
A method that uses liquid chromatography with tandem mass spectrometry (LC/MS/MS) has been developed for the highly sensitive and specific determination of amnesic shellfish poisoning toxins, diarrhetic shellfish poisoning toxins, and other lipophilic algal toxins and metabolites in shellfish. The method was subjected to a full single-laboratory validation and a limited interlaboratory study. Tissue homogenates are blended with methanol-water (9 + 1), and the centrifuged extract is cleaned up with a hexane wash. LC/MS/MS (triple quadrupole) is used for quantitative analysis with reversed-phase gradient elution (acidic buffer), electrospray ionization (positive and negative ion switching), and multiple-reaction monitoring. Ester forms of dinophysis toxins are detected as the parent toxins after hydrolysis of the methanolic extract. The method is quantitative for 6 key toxins when reference standards are available: azaspiracid-1 (AZA1), domoic acid (DA), gymnodimine (GYM), okadaic acid (OA), pectenotoxin-2 (PTX2), and yessotoxin (YTX). Relative response factors are used to estimate the concentrations of other toxins: azaspiracid-2 and -3 (AZA2 and AZA3), dinophysis toxin-1 and -2 (DTX1 and DTX2), other pectenotoxins (PTX1, PTX6, and PTX11), pectenotoxin secoacid metabolites (PTX2-SA and PTX11-SA) and their 7-epimers, spirolides, and homoYTX and YTX metabolites (45-OHYTX and carboxyYTX). Validation data have been gathered for Greenshell mussel, Pacific oyster, cockle, and scallop roe via fortification and natural contamination. For the 6 key toxins at fortification levels of 0.05-0.20 mg/kg, recoveries were 71-99% and single laboratory reproducibilities, relative standard deviations (RSDs), were 10-24%. Limits of detection were <0.02 mg/kg. Extractability data were also obtained for several toxins by using successive extractions of naturally contaminated mussel samples. A preliminary interlaboratory study was conducted with a set of toxin standards and 4 mussel extracts. The data sets from 8 laboratories for the 6 key toxins plus DTX1 and DTX2 gave within-laboratories repeatability (RSD(R)) of 8-12%, except for PTX-2. Between-laboratories reproducibility (RSDR) values were compared with the Horwitz criterion and ranged from good to adequate for 7 key toxins (HorRat values of 0.8-2.0).  相似文献   

4.
 Extracts containing the diarrhetic shellfish poisoning (DSP) toxins okadaic acid (OA), dinophysistoxin-2 (DTX2), and dinophysistoxin-1 (DTX1) were purified on a silica gel cartridge and derivatized with 4-bromomethyl-7 methoxycoumarin (BrMmc). After pre-column derivatization the BrMmc derivatives of the DSP toxins were directly injected into an HPLC system, isocratically eluted, and quantified by fluorescence detection. The signals of the esters showed good linearity in the fluorescence detector within the examined contamination range of 0.03 mg DSP/kg to 2.5 mg DSP/kg. The detection limits for the DSP toxins as 7-Mmc esters were 0.04 ng (corresponding to 0.05 mg DSP/kg). The chromatographic conditions allow to couple the HPLC device with mass spectrometry. The method was tested with various mussel tissue samples. Received: 14 December 1995/Revised: 26 January 1996/Accepted: 30 January 1996  相似文献   

5.
 Extracts containing the diarrhetic shellfish poisoning (DSP) toxins okadaic acid (OA), dinophysistoxin-2 (DTX2), and dinophysistoxin-1 (DTX1) were purified on a silica gel cartridge and derivatized with 4-bromomethyl-7 methoxycoumarin (BrMmc). After pre-column derivatization the BrMmc derivatives of the DSP toxins were directly injected into an HPLC system, isocratically eluted, and quantified by fluorescence detection. The signals of the esters showed good linearity in the fluorescence detector within the examined contamination range of 0.03 mg DSP/kg to 2.5 mg DSP/kg. The detection limits for the DSP toxins as 7-Mmc esters were 0.04 ng (corresponding to 0.05 mg DSP/kg). The chromatographic conditions allow to couple the HPLC device with mass spectrometry. The method was tested with various mussel tissue samples. Received: 14 December 1995/Revised: 26 January 1996/Accepted: 30 January 1996  相似文献   

6.
《Analytical letters》2012,45(11):1365-1376
A capillary electrophoresis-based enzyme immunoassay (CE-EIA) with electrochemical (EC) detection system was developed for the determination of two diarrheic shellfish poisoning (DSP) toxins okadaic acid (OA) and dinophysistoxin2 (DTX2). In this method, after the competitive immunoreaction in liquid phase, the horseradish peroxidase (HRP)-labeled antigen (Ag*) and the bound enzyme-labeled complex (Ag*-Ab) were separated and then the system of HRP catalyzing H2O2/o-aminophenol (OAP) reaction was adopted. The limit of detection (S/N = 3) was determined to be 0.05 and 0.07 ng/mL for OA and DTX2, respectively. The total analysis time was less than 40 min. The developed CE-EIA with EC detection system was capable of quantitatively detecting OA and DTX2 contents in the tested contaminated samples, and the results were compared with the same samples analyzed through enzyme-linked immunosorbent assay (ELISA). Consistent results between CE-EIA with EC detection and ELISA were found in most of the tested samples. The proposed system appeared to be more sensitive and faster than ELISA for determination of OA and DTX2 in shellfish meat extracts. Real shellfish samples were validated in recovery test, and the recoveries tested by the proposed method were 91.7–108.3% and 95.2–112.5% for OA and DTX2, respectively. The CE-EIA with EC detection provides a valid and sensitive analytical approach, not previously available, for the determination of OA and DTX2 in shellfish samples.  相似文献   

7.
Li A  Ma F  Song X  Yu R 《Journal of chromatography. A》2011,1218(11):1437-1442
Solid-phase adsorption toxin tracking (SPATT) technology was developed as an effective passive sampling method for dissolved diarrhetic shellfish poisoning (DSP) toxins in seawater. HP20 and SP700 resins have been reported as preferred adsorption substrates for lipophilic algal toxins and are recommended for use in SPATT testing. However, information on the mechanism of passive adsorption by these polymeric resins is still limited. Described herein is a study on the adsorption of OA and DTX1 toxins extracted from Prorocentrum lima algae by HP20 and SP700 resins. The pore size distribution of the adsorbents was characterized by a nitrogen adsorption method to determine the relationship between adsorption and resin porosity. The Freundlich equation constant showed that the difference in adsorption capacity for OA and DTX1 toxins was not determined by specific surface area, but by the pore size distribution in particular, with micropores playing an especially important role. Additionally, it was found that differences in affinity between OA and DTX1 for aromatic resins were as a result of polarity discrepancies due to DTX1 having an additional methyl moiety.  相似文献   

8.
The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function SPE sorbents was tested. Polymeric sorbents were found to retain most of the toxins. Optimization experiments were carried out to maximize recoveries and the effectiveness of the clean-up. In LC–MS/MS analysis, the observed matrix effects can depend on the chromatographic conditions used, therefore, two different HPLC methods were tested, using either an acidic or an alkaline mobile phase. The recovery of the optimized SPE protocol was around 90% for all toxins studied and no break-through was observed. The matrix effects were determined by comparing signal response from toxins spiked in crude and SPE-cleaned extracts with those derived from toxins prepared in methanol. In crude extracts, all toxins suffered from matrix effects, although in varying amounts. The most serious effects were observed for okadaic acid (OA) and pectenotoxin-2 (PTX2) in the positive electrospray ionization mode (ESI+). SPE clean-up on polymeric sorbents in combination with the alkaline LC method resulted in a substantial reduction of matrix effects to less than 15% (apparent recovery between 85 and 115%) for OA, yessotoxin (YTX) in ESI and azaspiracid-1 (AZA1), PTX2, 13-desmethyl spirolides C (SPX1), and gymnodimine (GYM) in ESI+. In combination with the acidic LC method, the matrix effects after SPE were also reduced but nevertheless approximately 30% of the matrix effects remained for PTX2, SPX1, and GYM in ESI+. It was concluded that SPE of methanolic shellfish extracts can be very useful for reduction of matrix effects. However, the type of LC and MS methods used is also of great importance. SPE on polymeric sorbents in combination with LC under alkaline conditions was found the most effective method.  相似文献   

9.
A new process for enzymatic synthesis of biodiesel at high water content (10–20%) with 96% conversion by lipase from Candida sp. 99–125 was studied. The lipase, a no-position-specific lipase, was immobilized by a cheap cotton membrane and the membrane-immobilized lipase could be used at least six times with high conversion. The immobilized lipase could be used for different oil conversion and preferred unsaturated fatty acids such as oleic acid to staturated fatty acids such as palmitic acid. The changes in concentration of fatty acids, diglycerides, and methyl esters in the reaction were studied and a mechanism of synthesis of biodiesel was suggested: the triglycerides are first enzymatically hydrolyzed into fatty acids, and then these fatty acids are further converted into methyl esters.  相似文献   

10.
A freeze-dried mussel tissue certified reference material (CRM-FDMT1) containing multiple groups of shellfish toxins has been prepared. Toxin groups present in the material include okadaic acid and the dinophysistoxins, azaspiracids, yessotoxins, pectenotoxins, spirolides and domoic acid. In this work, analytical methods have been examined for the characterisation of the candidate CRM. A comprehensive extraction procedure was developed, which gave good recovery (>98%) for all lipophilic toxins studied. A fast liquid chromatography–mass spectrometry (LC-MS) method was developed that separates the major toxins according to the MS ionisation mode of optimum sensitivity. Matrix effects associated with analysis of these extracts using the developed LC-MS method were assessed. Standard addition and matrix-matched calibration procedures were evaluated to compensate for matrix effects. The methods and approaches will be used for the precise characterisation of the homogeneity and stability of the various toxins in CRM-FDMT1 and for the accurate assignment of certified values. The developed methods also have excellent potential for application in routine regulatory monitoring of shellfish toxins.  相似文献   

11.
A liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the quantitative analysis of lipophilic marine toxins in shellfish extracts (mussel, oyster, cockle and clam) was validated in-house using European Union (EU) Commission Decision 2002/657/EC as a guideline. The validation included the toxins okadaic acid (OA), yessotoxin (YTX), azaspiracid-1 (AZA1), pectenotoxin-2 (PTX2) and 13-desmethyl spirolide-C (SPX1). Validation was performed at 0.5, 1 and 1.5 times the current EU permitted levels, which are 160 μg kg-1 for OA, AZA1 and PTX2 and 1,000 μg kg-1 for YTX. For SPX1, 400 μg kg-1 was chosen as the target level as no legislation has been established yet for this compound. The method was validated for determination in crude methanolic shellfish extracts and for extracts purified by solid-phase extraction (SPE). Extracts were also subjected to hydrolysis conditions to determine the performance of the method for OA and dinophysistoxin esters. The toxins were quantified against a set of matrix-matched standards instead of standard solutions in methanol. To save valuable standard, methanolic extract instead of the homogenate was spiked with the toxin standard. This was justified by the fact that the extraction efficiency is high for all relevant toxins (above 90%). The method performed very well with respect to accuracy, intraday precision (repeatability), interday precision (within-laboratory reproducibility), linearity, decision limit, specificity and ruggedness. At the permitted level the accuracy ranged from 102 to 111%, the repeatability from 2.6 to 6.7% and the reproducibility from 4.7 to 14.2% in crude methanolic extracts. The crude extracts performed less satisfactorily with respect to the linearity (less than 0.990) and the change in LC-MS/MS sensitivity during the series (more than 25%). SPE purification resulted in greatly improved linearity and signal stability during the series. Recently the European Food Safety Authority (EFSA) has suggested that to not exceed the acute reference dose the levels should be below 45 μg kg-1 OA equivalents and 30 μg kg-1 AZA1 equivalents. A single-day validation was successfully conducted at these levels. If the regulatory levels are lowered towards the EFSA suggested values, the official methods prescribed in legislation (mouse and rat bioassay) will no longer be sensitive enough. The validated LC-MS/MS method presented has the potential to replace these animal tests.  相似文献   

12.
The mouse bioassay is the methodology that is most widely used to detect okadaic acid (OA) in shellfish samples. This is one of the best-known toxins, and it belongs to the family of marine biotoxins referred to as the diarrhetic shellfish poisons (DSP). Due to animal welfare concerns, alternative methods of toxin detection are being sought. A rapid and specific biosensor immunoassay method was developed and validated for the detection of OA. An optical sensor instrument based on the surface plasmon resonance (SPR) phenomenon was utilised. A polyclonal antibody to OA was raised against OA–bovine thyroglobulin conjugate and OA–N-hydroxy succinimide ester was immobilised onto an amine sensor chip surface. The assay parameters selected for the analysis of the samples were: antibody dilution, 1/750; ratio of antibody to standard, 1:1; volume of sample injected, 25 μl min−1; flow rate, 25 μl min−1. An assay action limit of 126 ng g−1 was established by analysing of 20 shellfish samples spiked with OA at the critical concentration of 160 ng g−1, which is the action limit established by the European Union (EU). At this concentration of OA, the assay delivered coefficient of variations (CVs) of <10%. The chip surface developed was shown to be highly stable, allowing more than 50 analyses per channel. When the concentrations of OA determined with the biosensor method were compared with the values obtained by LC–MS in contaminated shellfish samples, the correlation between the two analytical methods was found to be highly satisfactory (r 2 = 0.991). Figure Biacore  相似文献   

13.
The selective C-terminal deprotection of O-glycopeptide (methoxyethoxy)ethyl esters is achieved under mild conditions (pH 6.6, 37 degrees C) by enzymatic hydrolysis using papain or lipase M from Mucor javanicus to give building blocks useful for chain-extending glycopeptide synthesis. On the other hand, the selective removal of acetyl protecting groups from the saccharide portion of glycopeptides is accomplished by alternative enzymatic hydrolysis with lipase WG from wheat germ to furnish model substrates for enzymatic glycosyl transfer reactions in order to extend the carbohydrate side chain of these conjugates.  相似文献   

14.
Marine biotoxins pose a significant food safety risk when bioaccumulated in shellfish, and adequate testing for biotoxins in shellfish is required to ensure public safety and long-term viability of commercial shellfish markets. This report describes the use of a benchtop Orbitrap system for liquid chromatography–mass spectrometry (LC-MS) screening of multiple classes of biotoxins commonly found in shellfish. Lipophilic toxins such as dinophysistoxins, pectenotoxins, and azaspiracids were separated by reversed phase LC in less than 7 min prior to MS data acquisition at 2 Hz with alternating positive and negative scans. This approach resulted in mass accuracy for analytes detected in positive mode (gymnodimine, 13-desmethyl spirolide C, pectenotoxin-2, and azaspiracid-1, -2, and -3) of less than 1 ppm, while those analytes detected in negative mode (yessotoxin, okadaic acid, and dinophysistoxin-1 and -2) exhibited mass errors between 2 and 4 ppm. Hydrophilic toxins such as domoic acid, saxitoxin, and gonyautoxins were separated by hydrophilic interaction LC (HILIC) in less than 4 min, and MS data was collected at 1 Hz in positive mode, yielding mass accuracy of less than 1 ppm error at a resolving power of 100,000 for the analytes studied (m/z 300–500). Data were processed by extracting 5 ppm mass windows centered around the calculated masses of the analytes. Limits of detection (LOD) for the lipophilic toxins ranged from 0.041 to 0.10 μg/L (parts per billion) for the positive ions, 1.6–5.1 μg/L for those detected in negative mode, while the domoic acid and paralytic shellfish toxins yielded LODs ranging from 3.4 to 14 μg/L. Toxins were detected in mussel tissue extracts free of interference in all cases.  相似文献   

15.
Summary An analytical evaluation of an HPLC method with diode array detection to separate and quantify polyphenolic compounds from pears has been made. The method was applied to the quantitative analysis of phenolics from five pear horticultural cultivars (“Agua”, “Blanquilla”, “Conference”, “Pasagrana” and “Decana”) in both peel and pulp matrices and evaluated for precision and accuracy. Precision was taken as the reproducibility in peak area of the polyphenols of interest as well as in the slope of calibration graphs. Values ranged 2–5%. Accuracy was evaluated by recovery of all polyphenolic compounds from both peel and pulp in all pears investigated. Accuracy values ranged 92–102%, and were independent of the polyphenolic structure, horticultural cultivar and matrix. Identification was by comparing retention times and UV spectra with those of standards when commercially available. When not available commercially, provisional identification was according to spectral characteristics as well as from isolation and hydrolysis data. Application of the method revealed differences between peel and pulp in all cases studied; the higher levels of phenolics were found in the peels. “Decana” and “Pasagrana” cultivars showed the highest phenolic content compounds whereas “Conference” showed the lowest.  相似文献   

16.
Quantitative determination by liquid chromatography (LC) coupled with mass spectrometry (MS) was achieved for the following 10 toxins found in association with diarrhetic shellfish poisoning: okadaic acid (OA), dinophysistoxin-1 (DTX1), 7-O-palmitoylokadaic acid (palOA), 7-O-palmitoyldinophysistoxin-1 (pa1DTX1), pectenotoxin-1 (PTX1), pectenotoxin-2 (PTX2), pectenotoxin-2 seco acid (PTX2SA), pectenotoxin-6 (PTX6), yessotoxin (YTX), and 45-hydroxyyessotoxin (YTXOH). Toxins in 2 g of the adductor muscle or the digestive glands of scallops, Patinopecten yessoensis, were extracted with 18 ml of methanol-water (9:1, v/v), freed of polar contaminants by partition between chloroform and water, and treated by solid-phase extraction on a silica cartridge column. Samples containing YTXOH were purified separately on a buffered reversed-phase column. Chromatographic separation was achieved by the following combinations of columns and mobile phases: a Symmetry C18 column with acetonitrile-0.05% acetic acid (7:3, v/v) for OA, DTX1, PTX6 and PTX2SA; a Develosil ODS column with the same mobile phase for PTX1 and PTX2; a Capcellpak column with methanol-2.5% acetic acid (98:2, v/v) for palOA and palDTX1; and an Inertsil ODS column with methanol-0.2 M ammonium acetate (8:2, v/v) for YTX and YTXOH. Carboxylic acid toxins were selectively monitored on [M-H]- ions, sulfated toxins on [M-Na]-ions, and neutral toxins on [M+NH4]+ ions. Average recoveries of the toxins spiked to tissue homogenates ranged from 70 to 134%. Detection limits in the muscle ranged from 5 to 40 ng/g and those in the digestive glands from 10 to 80 ng/g.  相似文献   

17.
The azaspiracids are a family of lipophilic polyether marine biotoxins that have caused a number of human intoxication incidents in Europe since 1995 after consumption of contaminated shellfish (Mytilus edulis). Levels of azaspiracids in shellfish for human consumption are monitored in accordance with EU guidelines: only shellfish with less than 160 μg kg−1 are deemed safe. The limited availability of commercially available standards for azaspiracids is a serious problem, because validated LC–MS methods are required for routine analysis of these toxins in shellfish tissues. The procedure described herein has been used for the separation and the isolation of four azaspiracid (AZA) toxins from shellfish, for use as LC–MS–MS reference materials. Five separation steps have been used to isolate azaspiracids 1, 2, 3, and 6. The purity of the toxins obtained has been confirmed by multiple mass spectrometric methods using authentic azaspiracid standards. The same techniques have been used for quantification of the toxins extracted. The isolation procedure involves several chromatographic purification techniques: solid-phase extraction (diol sorbent, 90% mass reduction, and 95 ± 1% toxin recovery); Sephadex size-exclusion chromatography (87% mass reduction and up to 95 ± 2% toxin recovery), Toyopearl HW size-exclusion chromatography (90% mass reduction and up to 92.5 ± 2.5% toxin recovery), and semi-preparative LC (78 ± 3% toxin recovery). The procedure effectively separates the toxins from the sample matrix and furnishes azaspiracid toxins (AZA1, AZA2, AZA3 and AZA6) of sufficient purity with an average yield of 65% (n = 5). Triple-quadrupole mass spectrometry was used for qualitative and quantitative monitoring of the isolation efficiency after each stage of the process. High-resolution mass spectrometric evaluation of the toxic isolated material in both positive and negative modes suggests high purity.  相似文献   

18.
The effect of γ-irradiation on concentrations of hydrophilic and lipophilic phycotoxins has been investigated by use of HPLC–UV and LC–MS. Pure toxins in organic solvents and toxins in mussel (Mytilus edulis) tissues were irradiated at three different doses. In solution all toxin concentrations were reduced to some extent. Most severe decreases were observed for domoic acid and yessotoxin, for which the smallest dose of irradiation led to almost complete destruction. For pectenotoxin-2 the decrease in concentration was less severe but still continuous with increasing dose. Azaspiracid-1 and okadaic acid were the least affected in solution. In shellfish tissue the decrease in toxin concentrations was much reduced compared with the effect in solution. After irradiation at the highest dose reductions in concentrations were between ca. 5 and 20% for the lipophilic toxins and there was no statistical difference between control and irradiated samples for azaspiracids in tissue. Irradiation of shellfish tissues contaminated with domoic acid led to a more continuous decrease in the amount of the toxin with increasing dose. The effect of irradiation on the viability of microbial activity in shellfish tissues was assessed by using total viable counting techniques. Microbial activity depended on the type of shellfish and on the pretreatment of the shellfish tissues (with or without heat treatment). As far as we are aware this is the first investigation of the effectiveness of irradiation as a technique for stabilising tissue reference materials for determination of phycotoxins. Our results suggest that this technique is not effective for materials containing domoic acid. It does, however, merit further investigation as a stabilisation procedure for preparation of shellfish tissue materials for some lipophilic toxins, in particular azaspiracids. Chemical structures of the toxins investigated in the study  相似文献   

19.
Production of biodiesel from pure oils through chemical conversion may not be applicable to waste oils/fats. Therefore, enzymatic conversion using immobilized lipase based on Rhizopus orzyae is considered in this article. This article studies this technological process, focusing on optimization of several process parameters, including the molar ratio of methanol to waste oils, biocatalyst load, and adding method, reaction temperature, and water content. The results indicate that methanol/oils ratio of 4, immobilized lipase/oils of 30 wt% and 40°C are suitable for waste oils under 1 atm. The irreversible inactivation of the lipase is presumed, and a stepwise addition of methanol to reduce inactivation of immobilized lipases is proposed. Under the optimum conditions the yield of methyl esters is around 88–90%.  相似文献   

20.
The lipase from Penicillium expansum PED-03 (PEL) was immobilized onto modified ultrastable-Y (USY) molecular sieve and the resolution of (R, S)-2-octanol was carried out in a bioreactor in nonaqueous media by the immobilized lipase. It was found that the conversion rate, enantiomeric excess (ee) value, and enantioselectivity (E) value of the resolution catalyzed by PEL immobilized on modified USY molecular sieve were much higher than those of the reaction catalyzed by free PEL and PEL immobilized on other supports. Immobilized on modified USY molecular sieve, the PEL exhibited obvious activity within a wider pH range and at a much higher temperature and showed a markedly enhanced stability against thermal inactivation, by which the suitable pH of the buffer used for immobilization could be “memorized.” The conversion rate of the reaction catalyzed by PEL immobilized on modified USY molecular sieve reached 48.84%, with excellent enantio-selectivity (avarege E value of eight batches >460) in nonaqueous media at “memorial” pH 9.5, 50°C for 24 h, demonstrating a good application potential in the production of optically pure (R, S)-2-octanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号