首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
Hong Wang 《Talanta》2009,77(5):1864-4296
Fluorescence enhancement of acridine orange (AO) in supramolecular hydrogels formed by self-assembly of the gelators 3-{[(2R)-2-(octadecylamino)-3-phenylpropanoyl]amino}butyrate (TC18PheBu) and 1,3:2,4-di-O-benzylidene-d-sorbitol (DBS) was investigated by steady-state and varying temperature fluorescence, polarized fluorescence and time-resolved fluorescence techniques. The results showed that the fluorescence intensities of AO in the gels remarkably increased in comparison with AO aqueous solutions, and increased with an increase of the gelator concentrations. The varying temperature fluorescence analysis indicated that fluorescence intensities of AO in the gels decreased upon an increase of temperature, and vice versa. This can be attributed to aggregation and dissociation of the gelators in the systems, since the fluorescence enhancement of AO was induced by self-assembly of the gelators. Polarized fluorescence analysis indicated that the values of anisotropy (r) of AO are significantly higher than that in water. This further confirmed that the three-dimensional network formed by the gelator aggregates constrained the rotation of AO entrapped within the gels, resulting in high values of anisotropy. Time-resolved fluorescence analysis indicated that the rates of fluorescence decay in the gels are lower than that in water. These results reveal thermo-reversibility of the fluorescence enhancement of AO in supramolecular hydrogels.  相似文献   

2.
Self-assembly in aqueous medium is of primary importance and widely employs hydrophobic interactions. Yet, unlike directional hydrogen bonds, hydrophobic interactions lack directionality, making difficult rational self-assembly design. Directional hydrophobic motif would significantly enhance rational design in aqueous self-assembly, yet general approaches to such interactions are currently lacking. Here, we show that pairwise directional hydrophobic/π-stacking interactions can be designed using well-defined sterics and supramolecular multivalency. Our system utilizes a hexasubstituted benzene scaffold decorated with 3 (compound 1) or 6 (compound 2) amphiphilc perylene diimides. It imposes a pairwise self-assembly mode, leading to well-defined supramolecular polymers in aqueous medium. the assemblies were characterized using cryogenic electron microscopy, small-angle X-ray scattering, optical spectroscopy, and EPR. Supramolecular polymerization studies in the case of 2 revealed association constants in 10(8) M(-1) range, and significant enthalpic contribution to the polymerization free energy. The pairwise PDI motif enables exciton confinement and localized emission in the polymers based on 1 and 2's unique photonic behavior, untypical of the extended π-stacked systems. Directional pairwise hydrophobic interactions introduce a novel strategy for rational design of noncovalent assemblies in aqueous medium, and bring about a unique photofunction.  相似文献   

3.
Hierarchical self-assembly of disubstituted ferrocene (Fc)-peptide conjugates that possess Gly-Val-Phe and Gly-Val-Phe-Phe peptide substituents leads to the formation of nano- and micro-sized assemblies. Hydrogen-bonding and hydrophobic interactions provide directionality to the assembly patterns. The self-assembling behavior of these compounds was studied in solution by using (1)H?NMR and circular dichroism (CD) spectroscopies. In the solid state, attenuated total reflectance (ATR) FTIR spectroscopy, single-crystal X-ray diffraction (XRD), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM) methods were used. Spontaneous self-assembly of Fc-peptides through intra- and intermolecular hydrogen-bonding interactions induces supramolecular assemblies, which further associate and give rise to fibers, large fibrous crystals, and twisted ropes. In the case of Fc[CO-Gly-Val-Phe-OMe](2) (1), molecules initially interact to form pleated sheets that undergo association into long fibers that form bundles and rectangular crystalline cuboids. Molecular offsets and defects, such as screw dislocations and solvent effects that occur during crystal growth, induce the formation of helical arrangements, ultimately leading to large twisted ropes. By contrast, the Fc-tetrapeptide conjugate Fc[CO-Gly-Val-Phe-Phe-OMe](2) (2) forms a network of nanofibers at the supramolecular level, presumably due to the additional hydrogen-bonding and hydrophobic interactions that stem from the additional Phe residues.  相似文献   

4.
The self-assembly of an amide-functionalized dithienyldiketopyrrolopyrrole (DPP) dye in aqueous media was achieved through seed-initiated supramolecular polymerization. Temperature- and time-dependent studies showed that the spontaneous polymerization of the DPP derivative was temporally delayed upon cooling the monomer solution in a methanol/water mixture. Theoretical calculations revealed that an amide-functionalized DPP derivative adopts an energetically favorable folded conformation in the presence of water molecules due to hydration. This conformational change is most likely responsible for the trapping of monomers in the initial stage of the cooperative supramolecular polymerization in aqueous media. However, the monomeric species can selectively interact with externally added fragmented aggregates as seeds through concerted π-stacking and hydrogen-bonding interactions. Consequently, the time course of the supramolecular polymerization and the morphology of the aggregated state can be controlled, and one-dimensional fibers that exhibit a J-aggregate-like bathochromically shifted absorption band can be obtained.  相似文献   

5.
A new hydrogelator based on L ‐phenylalanine with a long hydrophobic chain and positively charged terminus was synthesized, and its gelation behavior in H2O was investigated. Polarized optical microscopy (POM), field emission scanning electron microscopy (FE‐SEM), and X‐ray diffraction (XRD) results indicate that the hydrogelator self‐assembles into fibres‐like aggregates which then lead to the formation of a hydrogel. 1H‐NMR and CD spectra of hydrogels and aqueous solution revealed that intermolecular H‐bonding between the amide groups was the driving force for gelation. A luminescence study, in which ANS (8‐anilinonaphthalene‐1‐sulfonic acid) was used as a probe, indicated that the hydrophobic interactions between long chains were the driving force for gelation. Consequently, it was proved that the hydrogelator self‐assembles into fibre‐like aggregates and then forms supramolecular hydrogels through the H‐bonding and hydrophobic interactions.  相似文献   

6.
Directional self-assembly of uncharged molecules in water is a major challenge in supramolecular chemistry. Herein, it is demonstrated that peptide-based cavitands wrap around a hydrophobic core (fullerene C60) by a combination of the hydrophobic effect and hydrogen-bonding interactions to form highly ordered three-component complexes in water that resemble the molten-globule stage of protein folding. The complexes were characterized by DOSY NMR spectroscopy, small-angle X-ray scattering, and circular dichroism, and their structures were confirmed by X-ray crystallography. Enhancement of the CD signals by nearly one order of magnitude and increased hydrolytic stability of hydrazone bonds of the complexes relative to the nonassembled species were observed. In contrast, DMSO and DMSO/water mixtures were found to be highly disintegrative for these complexes. Interestingly, some cavitands can only be synthesized in the presence of the hydrophobic template followed by disassembly of the complexes.  相似文献   

7.
A supramolecular system of a perylene derivative containing bis(2,6-diacylaminopyridine) units and a perylene bisimide bound through three hydrogen-bonds was synthesized and characterized. 1H NMR spectra confirmed the existence of hydrogen-bonding interactions between the perylene derivative (3) and the perylene bisimide (7). The photocurrent generation of the self-assembled 3.7 film was measured, and a cathodic photocurrent response was obtained. SEM images indicated that well-defined long fibers could be fabricated by self-assembly, by exploiting the hydrogen bonding interactions and pi-pi stacking interactions of perylene rings.  相似文献   

8.
Masahiro Suzuki  Sanae Owa 《Tetrahedron》2007,63(31):7302-7308
We describe the simple preparation of new l-lysine derivatives with a gluconic or glucoheptonic group, their hydrogelation properties, and the thermal and mechanical properties of the supramolecular hydrogels. The l-lysine derivatives with a gluconic group have no hydrogelation ability, while the l-lysine-glucoheptonamide derivatives functioned as hydrogelators. Their hydrogelation abilities increased with the decreasing length of the spacer between the l-lysine segment and the glucoheptonic group. The compound, which has no spacer, formed a supramolecular hydrogel at 0.05 wt % in pure water. The thermal stability and high mechanical strength of the supramolecular hydrogels based on this compound significantly depended on the aqueous solutions. Electron microscopy and FTIR studies demonstrated that the hydrogelators created a three-dimensional network through hydrogen bonding and hydrophobic interactions in the supramolecular hydrogel. In addition, it was found that hydrophobic interactions played an important role in the thermal stability of the supramolecular hydrogel.  相似文献   

9.
A comprehensive review of the features driving self-assembly of 12-hydroxystearic acid (12-HSA), a low-molecular-weight gelator, and its applications in drug delivery and as other soft innovative materials are presented herein. 12-HSA is obtained via hydrogenation of ricinoleic acid naturally found in high concentrations in castor oil. The ability of 12-HSA to self-assemble is associated with the presence, position, and enantiomeric purity of the hydroxy group along the fatty acid chain. The polarity and position of the hydroxyl group facilitates more interaction possibilities leading to its exceptional self-assembly behavior giving rise to fibers, ribbons, and tubes in a variety of solvents. Upon self-assembly, 12-HSA undergoes crystallization resulting in the formation of high aspect ratio fibrillar structures due to noncovalent, intermolecular interactions forming self-spanning, three-dimensional networks (called self-assembled fibrillar networks) in both aqueous and organic solvents. Herein, emphasis is placed on emerging applications of 12-HSA supramolecular assemblies (i.e. responsive aqueous foams, gelled complex fluids, drug delivery systems, hydrogels, organogels, xerogels, and aerogel). The vast literature is compiled associated with 12-HSA self-assembly exploring supramolecular assemblies based on one ambidextrous gelator capable of assembling in aqueous and nonaqueous solvent.  相似文献   

10.
The conventional concept of hydrophobic interaction is generalized to include any kind of solvent-induced effects on the binding of two or more solutes in aqueous solutions. Specifically, we focus on the role of hydrogen-bonding between the solutes and solvent molecules. A qualitative examination of the solute-solvent hydrogen-bonding effect on molecular recognition, self-assembly, and stabilization of biopolymers shows that these effects might be quite large and possible more important than direct interactions between solute particles.  相似文献   

11.
The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.  相似文献   

12.
Most recent advances in the synthesis of supramolecular hydrogels based on low molecular weight gelators (LMWGs) have focused on the development of novel hybrid hydrogels, combining LMWGs and different additives. The dynamic nature of the noncovalent interactions of supramolecular hydrogels, together with the specific properties of the additives included in the formulation, allow these novel hybrid hydrogels to present interesting features, such as stimuli-responsiveness, gel-sol reversibility, self-healing and thixotropy, which make them very appealing for multiple biomedical and biotechnological applications. In particular, the inclusion of magnetic nanoparticles in the hydrogel matrix results in magnetic hydrogels, a particular type of stimuli-responsive materials that respond to applied magnetic fields. This review focuses on the recent advances in the development of magnetic supramolecular hydrogels, with special emphasis in the role of the magnetic nanoparticles in the self-assembly process, as well as in the exciting applications of these materials.  相似文献   

13.
A new bis-urea based supramolecular polymer is reported and shown by viscosimetry, neutron scattering (SANS), and calorimetry (ITC) to self-assemble in a wide range of solvents, encompassing the polarity scale from water to toluene. The presence of both hydrogen-bonding and hydrophobic groups ensures that self-assembly occurs in water, aprotic polar solvents, and nonpolar solvents. Both the driving force for the assembly and the exact structure of the filaments is solvent dependent, but whatever the solvent, long rigid filaments are formed in dynamic equilibrium with the monomer.  相似文献   

14.
We synthesised an uncharged amphiphilic porphyrin, meso-tetrakis-(3,5-di-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-phenyl)-porphyrin, and investigated the supramolecular self-assembly of the porphyrins and the incorporation of C60 molecules into the assembly in aqueous solutions. Spectroscopic and dynamic light scattering studies on the assembly of the amphiphilic porphyrin support that the amphiphilic porphyrins are likely held together through enhanced ππ interactions by pronounced hydrophobic effects in aqueous solutions. It was also found that C60 molecules are efficiently incorporated into the assembly. The fluorescence emitted from the porphyrin ring of the porphyrin/C60 co-assembly in aqueous solution is largely quenched, implying the presence of strong electronic interactions between C60 and porphyrin molecules in the supramolecular assembly.  相似文献   

15.
Despite the central importance of aqueous amphiphile assemblies in science and industry, the size and shape of these nano-objects is often difficult to control with accuracy owing to the non-directional nature of the hydrophobic interactions that sustain them. Here, using a bioinspired strategy that consists of programming an amphiphile with shielded directional Watson–Crick hydrogen-bonding functions, its self-assembly in water was guided toward a novel family of chiral micelle nanotubes with partially filled lipophilic pores of about 2 nm in diameter. Moreover, these tailored nanotubes are successfully demonstrated to extract and host molecules that are complementary in size and chemical affinity.  相似文献   

16.
Photoresponsive supramolecular hydrogel was fabricated from a small azobenzene-bridged dicationic pyridinium salt in the aqueous solution. The UV-vis light triggered reversible gel-sol transformation of such low-molecular-weight supramolecular hydrogel was systematically investigated through various analytical techniques.  相似文献   

17.
The self-assembly of nanotubes from chiral amphiphiles and peptide mimics is still poorly understood. Here, we present the first complete path to nanotubes by chiral self-assembly studied with C(12)-β(12) (N-α-lauryl-lysyl-aminolauryl-lysyl-amide), a molecule designed to have unique hybrid architecture. Using the technique of direct-imaging cryo-transmission electron microscopy (cryo-TEM), we show the time-evolution from micelles of C(12)-β(12) to closed nanotubes, passing through several types of one-dimensional (1-D) intermediates such as elongated fibrils, twisted ribbons, and coiled helical ribbons. Scattering and diffraction techniques confirm that the fundamental unit is a monolayer lamella of C(12)-β(12), with the hydrophobic tails in the gel state and β-sheet arrangement. The lamellae are held together by a combination of hydrophobic interactions, and two sets of hydrogen-bonding networks, supporting C(12)-β(12) monomers assembly into fibrils and associating fibrils into ribbons. We further show that neither the "growing width" model nor the "closing pitch" model accurately describe the process of nanotube formation, and both ribbon width and pitch grow with maturation. Additionally, our data exclusively indicate that twisted ribbons are the precursors for coiled ribbons, and the latter structures give rise to nanotubes, and we show chirality is a key requirement for nanotube formation.  相似文献   

18.
Hexa-peri-hexabenzocoronene derivatives (HBCs) that have hydrogen-bonding functionalities (either amido or ureido groups) adjacent to the aromatic cores have been synthesized to study the effects of intracolumnar hydrogen bonds on the self-assembly behavior of HBCs. The hydrogen bonds effectively increased the aggregation tendency of these compounds in solution. In the bulk state, the typical columnar supramolecular arrangement of HBCs was either stabilized substantially (1 a, 1 b, 2 a, and 2 b), or suppressed by dominant hydrogen-bonding interactions (3). For some of the compounds (1 a, 2 a, and 2 b), the supramolecular arrangement adopted in the liquid-crystalline state was even retained after annealing, presumably owing to the reinforcement of the pi-stacking interactions by the hydrogen bonds. Additionally, the combined effect of the hydrogen bonds and pi-stacking of the aromatic moieties led to the formation of fluorescent organogels, whereby some derivatives were further investigated as novel low molecular-mass organic gelators (LMOGs).  相似文献   

19.
Hydrophobically associating alginate (AA) derivatives were prepared by covalent fixation of dodecyl or octadecyl chains onto the polysaccharide backbone (AA-C12/AA-C18). In semidilute solution, intermolecular hydrophobic interactions result in the formation of physical hydrogels, the physicochemical properties of which can be controlled through polymer concentration, hydrophobic chain content, and nonchaotropic salts such as sodium chloride. The mechanical properties of these hydrogels can then be reinforced by the addition of calcium chloride. The combination of both calcium bridges and intermolecular hydrophobic interactions leads to a decrease in the swelling ratio accompanied by an increase of elastic and viscous moduli. Beads made of hydrophobically modified alginate were obtained by dropping an aqueous solution of alginate derivative into a NaCl/CaCl2 solution. As compared to unmodified alginate beads, modified alginate particles proved to be stable in the presence of nongelling cations or calcium-sequestering agents. However, evidence is presented for a more heterogeneous structure than that of plain calcium alginate hydrogels with, in particular, an increase in the effective gel mesh size, as determined by partition and diffusion coefficient measurements.  相似文献   

20.
Supramolecular polymers represent a highly interesting approach towards new "smart materials". A recent strategy includes the combination of different "orthogonal" non-covalent binding sites within one polymer system. Different functionalities can be introduced in a highly defined way by controlled self-assembly processes. This feature article presents highlights in the supramolecular polymer chemistry of multiple hydrogen-bonding, metal complexation (especially of bi- and terpyridines) and host-guest interactions as well as recent advances in combining these interactions in novel polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号