首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The ability of UV-irradiated African green monkey kidney cells (CV-1) to support the growth of unirradiated herpes simplex virus type 1 as measured by plaque forming ability has been investigated. The lowering of plaque formation by the virus when the host cell was irradiated was examined at thirteen different wavelengths. An action spectrum for this cellular parameter (capacity) was obtained in the wavelength region of 235–302 nm. This action spectrum points to nucleic acid as the critical target molecule for this effect.  相似文献   

2.
A series of phage with different genomes (both single-stranded and double-stranded RNA and DNA) was inactivated with hydrogen peroxide (H2O2) in various combinations with far-ultraviolet (FUV) and near-ultraviolet (NUV) radiations. In every case but one (a lipid-coated phage), a sublethal H2O2 concentration greatly enhanced killing by NUV but not FUV. Moreover, this NUV/H2O2 synergism was oxygen independent and there was little if any host cell reactivation upon NUV plus H2O2 inactivation. These results suggest that these phage are inactivated by a common mechanism irrespective of nucleic acid composition, but that some phage genomes may be more vulnerable to NUV/H2O2 inactivation than others.  相似文献   

3.
Abstract—The hydrophobic photosensitizers acridine and phenothiazine inactivate the lipid-contnining viruses PM2,φ6, and herpes simplex when samples are illuminated with near-UV radiation. φ23–1- a . which is insensitive to organic solvents and presumably contains no lipids. is not inactivated under comparable conditions. For acridinc, the inactivation of virus requires that oxygen be present and is inhibited by sodium azide, implicating the involvement of singlet oxygen. For phenothiazine, oxygen is not required for photosensitized inactivation. Treatment of PM2 with acridine and near-UV light caused a complete disruption of the virion, as determined by sucrose gradient analysis of treated and untreated samples. These data and related observations suggest that lipid-containing viruses are inactivated through photosensitized membrane damage.  相似文献   

4.
Abstract— The 'natural purification' of water, processes by which pathogenic organisms disappear from contaminated waters, is of great importance regarding water resources. The relative importance of the various processes which remove undesirable organisms is yet to be determined. Wastewater was exposed to sunlight by placing 120 m/samples in UV transparent or absorptive cylindrical vessels which were then placed in a 50/ container filled with water from a lagoon system, thus simulating actual exposure conditions in the lagoon system. Samples were exposed to natural sunlight for 3 days and received different wavelengths of sunlight, depending upon the presence of predetermined filters. The dynamics of the coliform population was observed. It was noted that coliform bacteria demonstrated a significant growth potential when held in darkness or during the night. An entire day of full unfiltered sunlight was a potent bacteriocidal agent, reducing coliform survival to less than 0.01% of the initial value. Removing the shorter wavelengths (Λ. < 325 nm) by optical filters or by the optical properties of the wastewater itself still left components of sunlight capable of killing coliforms. Our studies support the concept that solar UV radiation makes a substantial contribution to the natural purification of water.  相似文献   

5.
Solar irradiation of a panel of human cell lines revealed three phenomena relevant to understanding the biological role of melanin; a heavily melanised melanoma line (MM418) was considerably more resistant to solar killing compared with HeLa and amelanotic melanoma cells of similar size and DNA content; MM418 cells were also resistant to killing by artificial UVB and by hydrogen peroxide generated in situ with extracellular glucose oxidase; and no difference in survival between the cell lines was found using 254 nm UV or gamma radiation. MM418 cells were resistant to sunlight when irradiated as attached monolayers but not when irradiated in suspension. Further studies showed that resistance to solar radiation in MM418 cells was not due to less DNA damage, as judged by inhibition of semiconservative DNA synthesis, or to enhanced constitutive or induced repair determined by reactivation of irradiated adenovirus. These results indicate that melanisation protects human cells from solar UVB in vitro and that the mechanism is associated with protection from hydrogen peroxide-type damage rather than direct shielding of DNA.  相似文献   

6.
Abstract— A comparison is made between the use of colony forming ability and the capacity of cells to produce viruses following infection (called capacity) as assays for the response of mammalian cells to UV radiation. Experiments using two different types of mammalian cells, a rapidly growing, good colony forming monkey kidney cell line (CV-1P) and a slowly growing human skin fibroblast line that was a relatively poor and variable colony former (XP25RO), were conducted using both assay systems. Viral capacity was found to be a more consistent indicator of UV damage to cultured cells than was colony forming ability, especially for the XP25RO cells. Apparent advantages and disadvantages of the use of capacity as an indicator of UV radiation damage are discussed.  相似文献   

7.
Abstract The wavelength dependence of ultraviolet radiation-induced cell killing and mutagenicity in L5178Y mouse lymphoma cells has been determined from 235 nm to 313 nm. Cells were irradiated in phosphate buffered saline at 20°C. The amount of cell killing was determined by cloning in soft agar medium immediately after irradiation. Mutation frequency was determined, after a 3-day expression time, by cloning in soft agar medium in the presence and the absence of 5-bromo-2'-deoxyuridine (BrdUrd). The endpoint used to quantitate lethal effects was the exposure necessary to reduce the surviving fraction to 10%, while the endpoint for mutagenesis was the exposure necessary to increase the frequency of BrdUrd-resistant colonies ten-fold over the background level. Data were corrected for quantum energy and the action spectra for cell killing and mutagenesis were plotted as relative biological effectiveness per quantum vs wavelength, relative to the effect at 265.2 nm. Both action spectra show broad maxima at 270 nm, and are very similar to the action spectra determined by Rothman and Setlow (1979) for pyrimidine dimer formation and cell killing in V-79 cells.  相似文献   

8.
9.
Abstract— Stationary cells of four Escherichia coli strains exhibiting all four possible combinations of genes controlling near-UV sensitivity ( nur vs nur +) and recombination proficiency (far-UV sensitivity; recA1 us recA +) have been inactivated by visible light in the presence of acridine orange (AO, 10µg/m l ) and sunlight. The results demonstrate that strains sensitive to near-UV inactivation are also sensitive to inactivation by visible light in the presence of AO and sunlight irrespective of the recA allele carried by the strain. These results may be interpreted to mean that major mechanisms of inactivation of stationary E. coli cells by near-UV, visible light in the presence of AO and sunlight are similar and not closely related to the mechanism of inactivation by far-UV.  相似文献   

10.
Abstract— We have measured a calcium and magnesium dependent change in cell shape when mammalian cell monolayers are being prepared for irradiation by replacing their growth medium with certain buffers. In some cases, flattened cells (umbonate) assumed a spherical configuration. In order to assume a centrally located target molecule, we used a DNA-dependent cellular function–pacity for herpes viral growth–as the parameter to measure ultraviolet (UV) sensitivity of cells irradiated while in either of the two shapes. Umbonate cells were more sensitive to UV than were spherical cells. Exposures to the cell that lowered the cellular capacity of umbonate cells to the 10% survival level only lowered spherical cells to the 50% level. Twenty-seven per cent additional UV exposure to spherical cells was required to get the same effect as with umbonate cells. Included in the text are photographs of both cell types, survival curves for cellular capacity, a measure of the absorbance of cell homogenates, and a calculation of the relative number of photons absorbed by each cell nucleus.  相似文献   

11.
Abstract— The action spectrum for inactivation of a Rhizobiurn bacteriophage by U.V. radiation follows the shape of the absorption spectrum of DNA between the wave-lengths of 240 and 290 mμ (where inactivation probably reflects damage to the nucleic acid only), and deviates sharply upwards at wave-lengths shorter than 240 mμ (where inactivation may depend on damage to both the nucleic acid, and protein of the phage). The rate of inactivation follows first order kinetics approximately at all wave-lengths tested. Infectivity of the phage is halved when each mg of the phage nucleic acid has absorbed about 0 08 J of radiation energy at any wave-length between 240 and 290 mμ.
The bacteriopharge can be photoreactivated after inactivation at any wave-length between 230 and 290 mμ, but less so after inactivation at 230 mμ than at any wave-length above 240 mμ. No evidence was found to suggest that dimerization of thymine residues of the phage-DNA plays any part in the mechanism of inactivation of the bacteriophage by U.V. radiation.  相似文献   

12.
Abstract— Ultraviolet-induced pyrimidine dimers were not found to be excided from the DNA of Chinese hamster cells in small oligounucleotides. At doses whereby many cells survive the radiation, the dimers were still associates with the large polynucleotides even after 48 hr of postirradiation incubation.  相似文献   

13.
The recognition of bacteria by mammalian cells, or vice versa, involves specific, i.e. ligand-receptor interactions, and nonspecific, physicochemical factors, e.g. surface charge and hydrophobicity. Specific interactions can be of non-immunological character, viz. carbohydrate-specified, lectin-like cell-cell association, conveyed by bacterial adhesins, e.g. fimbriae or mammalian cell appendages for instance on macrophages. Other bacterial adhesins bind to receptor substances adsorbed onto the mammalian cells like serum proteins, or molecules being part of the histocompatibility antigen complex, e.g. β2-microglobulin. Immunological recognition comprises association between antibody or complement-coated (opsonized) particles with Fc- and C3b-receptors on phagocytic cells (polymorphonuclear leukocytes, macrophages, Kuppfer cells). On the other hand, these apparently specific interactions between ligands and receptors identified at the molecular level, also achieve general physicochemical alterations.

The present communication reviews experimental data on the dualistic character of the association between bacteria and animal cells, i.e. the interplay between specific and non-specific factors that promote or counteract cell-cell recognition.  相似文献   

14.
Abstract— Action spectra for the lethal effects of ultraviolet light (254–434 nm) irradiation delivered under aerobic or anaerobic conditions to Escherichia coli RT2 (specifically sensitive to near-UV radiation; > 320 nm) and E. coli RT4 (near-UV resistant) were prepared. Negligible oxygen dependence was observed for both strains below about 315 nm. The oxygen enhancement ratio (OER) for RT4 increased above this wavelength to the longest wavelength used, whereas for RT2 there was a greater increase in the OER to a large peak at 365 nm, then a progressive decrease at longer wavelengths. The results are consistent with the possibility that the sensitivity of strain RT2 to near-UV radiation may be due to hyperproduction of photosensitizer, operating via photodynamic type reactions involving excited species of oxygen.  相似文献   

15.
Survival of wild-type and four radiation-sensitive (rad) mutants of the nematode Caenorhabditis elegans was determined after near-UV irradiation in the presence of 8-methoxypsoralen (8-MOP). Three sets of inactivation profiles were generated for each strain by irradiating synchronous populations of either early embryos, late embryos or first-stage larvae (L1s). Late embryos were consistently the most sensitive. Curiously, none of the four rad mutants were even moderately hypersensitive. Split-dose experiments indicated that DNA-DNA crosslinks were primarily responsible for lethality. Crosslink induction and repair were determined using two different assays. In both cases, little if any repair was observed in wild-type. This lack of repair thus explains why the rad mutants were not hypersensitive to 8-MOP photoinactivation. Since early embryos undergo extensive cell cycling, their resistance to 8-MOP photoinactivation suggests that replication is highly refractory to both monoadducts and crosslinks, as has been demonstrated previously for UV radiation-induced photoproducts (Hartman et al., 1991, Mutat. Res., 255, pp. 163-173).  相似文献   

16.
Abstract— The effect of 8-methoxypsoralen (8-MOP) plus ultraviolet radiation (UV) of different wavelengths in the region 238–365 nm on the induction of SV40 from SV40-transformed Syrian hamster kidney cells was investigated. Results indicate that 8-MOP + UV treatment activates as much as 1000-fold more virus than UV alone at wavelengths in the region 302–365 nm. At wavelengths below 302 nm, 8-MOP addition to cells prior to irradiation shows little, if any, effect. A wavelength dependence for this viral induction is presented.  相似文献   

17.
Abstract— Diazobicyclo (2.2.2) octane (DABCO) protects the genetic activity of purified transforming Bacillus subtilis DNA against inactivation by near-, but not far-, UV light. The maximum dose-modifying factor is 0.4, at 0.1 M DABCO. Maximal protection is at about 350 nm and no protection occurs below 313 nm. The spectrum for protection is similar to that described for 2-aminoethylisothiouronium bromide hydrobromide. The relevance of these observations with regard to the role of singlet oxygen in near-UV effects is discussed.  相似文献   

18.
Abstract— -Ultraviolet effects on amoeboid cells of three strains of Dictyosrrlium discoidruin , NC-4. γs-13 and γs-18. for killing. fruiting body formation, spore formation and viability of the spores were studied.
The strain of γs-13 was more sensitive to UV light for killing than NC-4 at 10% survival. In addition. γs-13 was the most sensitive strain among the three for fruiting body formation and spore formation. The developmental process of this organism, however, showed a large resistance to UV light when compared with the killing. The spores of γs-13 formed after UV irradiation were mostly non-viable, though those of γs-18 and NC-4 were fully viable  相似文献   

19.
Abstract A DNA repair competent strain of Escherichia coli K-12 showed sensitivity to inorganic salts (at concentrations routinely used in minimal media) after irradiation with broad spectrum near–UV radiation, at fluences that caused little inactivation when plated on complex growth medium. This effect was not observed with cells that had been exposed to 254 nm radiation. This sensitivity to minimal medium was increased by increasing the salt concentration of the medium and by increasing the pH of the medium. This sensitivity was greatly increased by adding to the medium a low concentration of commercial glassware cleaning detergent that had no effect on unirradiated cells or far-UV irradiated cells. These findings may explain the large variability often observed in near-UV radiation survival data, and demonstrate that, at least on minimal medium plates, membrane damage contributes significantly towards cell killing. This phenomenon is largely oxygen dependent.  相似文献   

20.
Abstract— The effect of UV radiation in the wavelength region 230 nm to 302 nm on the ability of an irradiated mammalian cell to reactivate UV-irradiated mammalian virus was tested. An action spectrum for radiation enhanced reactivation (RER) is presented. The shape of the action spectrum points to a combined nucleic acid-protein target for UV radiation effects on this cellular parameter. An analysis of the results of others involving the biochemical and photobiological events involved in RER does not allow us to distinguish which macromolecule is the major contributor to this effect. Studies involving an analogous phenomenon in bacteria (Weigle reactivation) imply that RER and WR may involve similar mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号