首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many physical experiments have shown that the domain switching in a ferroelectric material is a complicated evolution process of the domain wall with the variation of stress and electric field. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of ferroelectric ceramic and used to study the nonlinear constitutive behavior of ferroelectric body in this paper. The principle of stationary total energy is put forward in which the basic unknown quantities are the displacement u i , electric displacement D i and volume fraction ρ I of the domain switching for the variant I. Mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion. On the basis of the domain switching criterion, a set of linear algebraic equations for the volume fraction ρ I of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. Then a single domain mechanical model is proposed in this paper. The poled ferroelectric specimen is considered as a transversely isotropic single domain. By using the partial experimental results, the hardening relation between the driving force of domain switching and the volume fraction of domain switching can be calibrated. Then the electromechanical response can be calculated on the basis of the calibrated hardening relation. The results involve the electric butterfly shaped curves of axial strain versus axial electric field, the hysteresis loops of electric displacement versus electric filed and the evolution process of the domain switching in the ferroelectric specimens under uniaxial coupled stress and electric field loading. The present theoretic prediction agrees reasonably with the experimental results given by Lynch. The project supported by the National Natural Science Foundation of China (10572138).  相似文献   

2.
In this paper, the effect of electric boundary conditions on Mode I crack propagation in ferroelectric ceramics is studied by using both linear and nonlinear piezoelectric fracture mechanics. In linear analysis, impermeable cracks under open circuit and short circuit are analyzed using the Stroh formalism and a rescaling method. It is shown that the energy release rate in short circuit is larger than that in open circuit. In nonlinear analysis, permeable crack conditions are used and the nonlinear effect of domain switching near a crack tip is considered using an energy-based switching criterion proposed by Hwang et al.(Acta Metal. Mater.,1995). In open circuit, a large depolarization field induced by domain switching makes switching much more diffcult than that in short circuit. Analysis shows that the energy release rate in short circuit is still larger than that in open circuit, and is also larger than the linear result. Consequently,whether using linear or nonlinear fracture analysis, a crack is found easier to propagate in short circuit than in open circuit, which is consistent with the experimental observations of Kounga Njiwa et al.(Eng. Fract. Mech., 2006).  相似文献   

3.
This article documents both modeling and experimental studies developed to investigate the switching behavior of ferroelectric single crystals. The theoretical model makes a priori ansatz that switching follows the evolution of a particular domain pattern. The choice of this configuration is dictated by the requirement that domains remain compatible during evolution, giving rise to a low-energy path for the overall switching. The construction of this pattern is achieved using multirank laminates. It offers an advantage of specifying different types of domain wall movements, leading to a distinction for the switching types. A loading experiment is performed on a barium titanate (BaTiO3) single crystal with a constant compressive stress and a cyclic electric field. Both 180 and 90 coercive fields are measured as input parameters required for the theoretical framework. The simulation results show good agreement with the observed strains measured by the present and other available experiments. It is found that depolarization has a non-trivial influence on attainable actuation strains.  相似文献   

4.
In this contribution a micromechanically motivated model for rate-dependent switching effects in piezoelectric materials is developed. The proposed framework is embedded into a three-dimensional finite element setting whereby each element is assumed to represent an individual grain. Related dipole (polarization) directions are thereby initially randomly oriented at the element level to realistically capture the originally un-poled state of grains in the bulk ceramics. The onset of domain switching processes is based on a representative energy criterion and combined with a linear kinetics theory accounting for time-dependent propagation of domain walls during switching processes. In addition, grain boundary effects are incorporated by making use of a macromechanically motivated probabilistic approach. Standard volume-averaging techniques with respect to the response on individual grains in the bulk ceramics are later on applied to obtain representative hysteresis and butterfly curves under macroscopically uniaxial loading conditions at different loading frequencies. It turns out that the simulations based on the developed finite element formulation nicely match experimental data reported in the literature.  相似文献   

5.
A micromechanics-based thermodynamic model for the phase transition of ferroelectric crystals is developed and, with it, the shift of Curie temperature and evolution of ferroelectric phase upon cooling are examined. This approach differs from the classical phenomenological one in that the evolution of new domain concentration can be predicted. We start out by formulating the Gibbs free energy of a generic, two-phase crystal consisting of the parent paraelectric phase and the transformed ferroelectric phase, at a given level of temperature, stress, and electric field. The thermodynamic driving force for domain growth is then derived and, together with the resistance force, a kinetic equation is established. The derived driving force is found to arise from three different sources of Gibbs free energy: (i) the interaction energy due to the heterogeneity of electromechanical moduli of the parent and product phases, (ii) the energy dissipation due to spontaneous polarization, and (iii) the self-energy of the dual-phase system due to the existence of polarization strain and electric polarization. For a BaTiO3 crystal the electromechanical heterogeneity is found to play a rather significant role that seems not to have been recognized before. The derived shift recovers to the Clausius-Clapeyron relation if such heterogeneity disappears. We have examined in detail several factors that affect the shift of Curie temperature, and calculated the evolution of overall polarization and dielectric constant of a BaTiO3 crystal. The results are found to be consistent with available test data.  相似文献   

6.
A crack in a ferroelectric ceramic with perfect saturation under electric loading is analyzed. The boundary of the electric displacement saturation zone ahead of the crack tip is assumed to be ellipse in shape. The shape and size of ferroelectric domain switching zone near a crack tip is determined based on the nonlinear electric theory. The stress intensity factor induced by ferroelectric domain switching under small-scale conditions is numerically obtained as a function of the electric saturation zone parameter and the ratio of the coercive electric field to the yield electric field. It is found that the stress intensity factor increases as the ratio of the semi-axes of the saturation ellipse increases.  相似文献   

7.
A nonlinear finite element (FE) model based on domain switching was proposed to study the electromechanical behavior of ferroelectric ceramics. The incremental FE formulation was improved to avoid any calculation instability. The problems of mesh sensitivity and convergence, and the efficiency of the proposed nonlinear FE technique have been assessed to illustrate the versatility and potential accuracy of the said technique. The nonlinear electromechanical behavior, such as the hysteresis loops and butterfly curves, of ferroelectric ceramics subjected to both a uniform electric field and a point electric potential has been studied numerically. The results obtained are in good agreement with those of the corresponding theoretical and experimental analyses. Furthermore, the electromechanical coupling fields near (a) the boundary of a circular hole, (b) the boundary of an elliptic hole and (c) the tip of a crack, have been analyzed using the proposed nonlinear finite element method (FEM). The proposed nonlinear electromechanically coupled FEM is useful for the analysis of domain switching, deformation and fracture of ferroelectric ceramics.The project supported by the National Natural Science Foundation of China (10025209, 10132010 and 90208002), the Research Grants of the Council of the Hong Kong Special Administrative Region, China (HKU7086/02E) and the Key Grant Project of the Chinese Ministry of Education (0306)  相似文献   

8.
IntroductionRecently ,theferroelectricceramicshassuchexcellentcharacteristicsofpiezoelectricityandpyroelectricityetc .thatitbecomesoneofthemostimportantfunctionalmaterials.Forinstance ,thewidelyappliedsensors,transducersandactuatorsetc .aremadeoftheferroe…  相似文献   

9.
We study the electromechanical behavior of lead zirconate titanate ferroelectric ceramics (PZT), by means of a three-dimensional continuum model for deformable ferroelectric bodies in their polar phase characterized by spontaneous polarization and strain. Spontaneous polarization and strain organize into a domain structure which minimizes electrostatic and elastic energies and which can be modified by the application of electromechanical loads. Such process, which is called “domain switching”, is associated with electrical and mechanical hysteresis and can be studied as a minimization problem for a functional which reminds the micromagnetic energy of deformable ferromagnetics. In this paper, which is the first of two, we deal with the electromechanical model and related constitutive assumptions, as well as with the analysis of domain structure in PZT. In particular, following the discover of a new monoclinic phase in PZT carried by Noheda and co-workers, we analyze twinning between spontaneous strain at the various phase boundaries and show that both non-generic, non-conventional twins and finely-twinned laminates are possible, and also that the presence of a monoclinic phase may explain PZT exceptional properties.  相似文献   

10.
This paper presents micromechanics based analysis of elastic strain and changes in the texture of poled polycrystalline ferroelectric PZT ceramics for direct comparison with synchrotron X-ray measurements. The grains are modelled as spherical inclusions, to which transformation strains are assigned depending on the fractions of different ferroelectric domains. Eshelby's inclusion problem with the classical self-consistent method is applied to evaluate the elastic state of the grains. In particular, the elongation due to lattice elastic strain is calculated as a function of inclination Ψ relative to the polar axis. The ratio of diffraction peak intensities, corresponding to the domain fractions, is also expressed as a function of Ψ. This analysis identifies the special character of the reflection, for which the lattice strain along in the stress free state is independent of ferroelectric domain population and hence unaffected by poling. The elongation due to the lattice strain parallel to and peak intensity ratio are expressed in terms of the overall macroscopic strain of a poled specimen, each having a dependence.  相似文献   

11.
In this paper, a general form for multi-axial constitutive laws for ferroelectric ceramics is constructed. The foundation of the theory is an assumed form for the Helmholtz free energy of the material. Switching surfaces and associated flow rules are postulated in a modified stress and electric field space such that a positive dissipation rate during switching is guaranteed. The resulting tangent moduli relating increments of stress and electric field to increments of strain and electric displacement are symmetric since changes in the linear elastic, dielectric and piezoelectric properties of the material are included in the switching surface. Finally, parameters of the model are determined for two uncoupled cases, namely non-remanent straining ferroelectrics and purely ferroelastic switching, and then for the fully coupled ferroelectric case.  相似文献   

12.
We have conducted a systematical investigation to reveal the stability and evolution path of various ferroelectric domain patterns in nanofilms subjected to mechanical loads and related flexoelectric field. Within a rigorous framework of flexoelectricity, a phase-field approach has been established for simulating the domain structure of ferroelectric nanofilms. The electromechanical fields of the nanofilms are numerically solved by a fast Fourier transform technique (FFT) based on the combination of Khachaturyan's microscopic elastic theory and Stroh's formalism of anisotropic elasticity. Using this approach, we simulate eight types of domain patterns that can be stabilized in the nanofilms. It is further demonstrated that these domain patterns can be significantly affected by the mechanical loads and related flexoelectric field and exhibit fruitful evolution paths. To adapt the applied mechanical strain and strain gradient, the domain pattern may remain stable, evolve into another polydomain pattern, or become a monodomain state (an effect of domain erasing). The domain fraction, detailed domain morphology, average stresses in the nanofilms, average polarization and temporal evolution characteristics of the domain patterns under various mechanical loads and sources of flexoelectric field have been analyzed. This investigation should provide instructive information for the practical application of ferroelectric nanofilms under complex and changeable mechanical conditions.  相似文献   

13.
Electric-field-induced fatigue crack growth in pre-cracked PZT ferroelectric ceramics is experimentally investigated in this work. It is found that the crack open and close under an alternating electric field is a major mechanism of crack propagation. The experimental results also show that the frequency, waveform, as well as the amplitude ratio, of the electric loading, play important roles in electric-field-induced fatigue cracking. Empirical formulations of fatigue crack propagation rates are obtained based on the experimental results. It is revealed that the crack grows at a nearly constant rate when the loading frequency is below 100 Hz. However, with the increase of the loading frequency over 125 Hz, the crack propagation rate diminishes rapidly.  相似文献   

14.
A continuum thermodynamics framework is devised to model the evolution of ferroelectric domain structures. The theory falls into the class of phase-field or diffuse-interface modeling approaches. Here a set of micro-forces and governing balance laws are postulated and applied within the second law of thermodynamics to identify the appropriate material constitutive relationships. The approach is shown to yield the commonly accepted Ginzburg-Landau equation for the evolution of the polarization order parameter. Within the theory a form for the free energy is postulated that can be applied to fit the general elastic, piezoelectric and dielectric properties of a ferroelectric material near its spontaneously polarized state. Thereafter, a principle of virtual work is specified for the theory and is implemented to devise a finite element formulation. The theory and numerical methods are used to investigate the fields near straight 180° and 90° domain walls and to determine the electromechanical pinning strength of an array of line charges on 180° and 90° domain walls.  相似文献   

15.
In the present study, an I-integral method is established for solving the crack-tip intensity factors of ferroelectric single-crystals. The I-integral combined with the phase field model is successfully used to investigate crack-tip intensity factor variations due to domain switching in ferroelectricity subjected to electromechanical loadings, which exhibits several advantages over previous methods based on small-scale switching. First, the shape of the switching zone around a crack tip is predicted by the time-dependent Ginzburg–Landau equation, which does not require preset energy-based switching criterion. Second, the I-integral can directly solve the crack-tip intensity factors and decouple the crack-tip intensity factors of different modes based on superimposing an auxiliary state onto an actual state. Third, the I-integral is area-independent, namely, the I-integral is not affected by the integral area size, the polarization distributions, or domain walls. This makes the I-integral applicable to large-scale domain switching. To this end, the electro-elastic field intensity factors of an impermeable crack in PbTiO3 ferroelectric single crystals are evaluated under electrical, mechanical, and combined loading. The intensity factors obtained by the I-integral agree well with those obtained by the extrapolation technique. From numerical results, the following conclusions can be drawn with respect to fracture behavior of ferroelectrics under large-scale switching. Under displacement controlled mechanical loading, the stress intensity factors (SIFs) decrease monotonically due to the domain switching process, which means a crack tip shielding or effective switching-induced toughening occurs. If an external electric field is applied, the electric displacement intensity factor (EDIF) increases in all cases, i.e., the formed domain patterns enhance the electric crack tip loading. The energy release rate, expressed by the crack-tip J-integral, is reduced by the domain switching in all examples, which underlines the switching-induced-toughening effect. In contrast, under stress controlled load, the SIF evolves due to large-scale switching to a stable value, which is higher than the non-switching initial value, i.e., fracture is promoted in this case.  相似文献   

16.
The thermodynamic driving force for domain growth in a rank-2 laminated ferroelectric crystal is derived in this article, and we used it, together with a homogenization theory, to study the issue of enhanced electrostrictive actuation recently reported by Burcsu et al. [2004. Large electrostrictive actuation of barium titanate single crystals. J. Mech. Phys. Solids 52, 823-846]. We derived this force from the reduction of Gibbs free energy with respect to the increase of domain concentration. It is shown that both the free energy and the thermodynamic force consist of three parts: the first arises from the difference in M0 and M1, the linear electromechanical compliances of the parent and product domains, respectively, at a given level of applied stress and electric field, the second stems from the electromechanical work associated with the change of spontaneous strain and spontaneous polarization during domain switch, and the third from the internal energy due to the distribution of polarizations strain and electric polarization inside the crystal. We prove that the first term is substantially lower than the second one, and the third one is identically zero with compatible domain pattern. The second one is, however, not exactly equal to the commonly written sum of the products of stress with strain, and electric field with polarization during switch, unless both domains have identical moduli in the common global axes. We also show that, with compatible domain patterns and when M1=M0, this driving force is identical to Eshelby's driving force acting on a flat interface due to the jump of energy-momentum tensor. Applications of the theory to a BaTiO3 crystal subjected to a fixed axial compression and decreasing electric field from the [0 0 1] state reveal that the crystal undergoes a three-stage switching process: (i) the 0→90° switch to form a rank-1 laminate, (ii) the 0→180° switch inside the 0° domain to form a laminate I with a concurrent 90°→−90° switch inside the 90° domain to form laminate II, creating a rank-2-laminated domain pattern, and (iii) finally the 90→180° switch. It is the exchange of stability between the 0, 90°, and 180° domains under compression and electric field that is the origin of the enhanced actuation. We illustrate these intrinsic features by showing the evolution of these domains, and demonstrate how the reported large actuation strain can be attained with a rank-2 laminate.  相似文献   

17.
A micromechanics-based finite element model for the constitutive behavior of polycrystalline ferromagnets is developed. In the model, the polycrystalline solid is assumed to comprise numerous single crystals with randomly distributed crystallographic orientations, and the single crystals, in turn, consist of ferromagnetic domains, each of which is represented by a cubic element. The dipole directions of the domains are randomly assigned to simulate the crystallographic nature of ferromagnetic polycrystals. A switching criterion for the domains is specified at the microscopic level. The macroscopic constitutive behavior is obtained by averaging the microscopic/local behavior of each domain. The developed model has been applied to the simulation of a ferromagnetic material. With appropriate material parameters adopted, hysteresis loops of the predicted magnetic induction versus magnetic field and those of the strain versus magnetic field are shown to agree well with experimental observations.The project supported by the National Natural Science Foundation of China (90205030, 10472088, 10425210), the National Basic Research Program of China (2006CB601202) and the State Administration of the Foreign Experts Affairs Through the “111” Project (B06024) The English text was polished by Yunming Chen.  相似文献   

18.
Complex, non-linear, irreversible, hysteretic behavior of polycrystalline ferroelectric materials under a combined electro-mechanical loading is a result of domain wall motion, causing simultaneous expansion and contraction of unlike domains, grain sub-divisions that have distinct spontaneous polarization and strain. In this paper, a 3-dimensional finite element method is used to simulate such a polycrystalline ferroelectric under electrical and mechanical loading. A constitutive law due to Huber et al. [1999. A constitutive model for ferroelectric polycrystals. J. Mech. Phys. Solids 47, 1663-1697] for switching by domain wall motion in multidomain ferroelectric single crystals is employed in our model to represent each grain, and the finite element method is used to solve the governing conditions of mechanical equilibrium and Gauss's law. The results provide the average behavior for the polycrystalline ceramic. We compare the outcomes predicted by this model with the available experimental data for various electromechanical loading conditions. The qualitative features of ferroelectric switching are predicted well, including hysteresis and butterfly loops, the effect on them of mechanical compression, and the response of the polycrystal to non-proportional electrical loading.  相似文献   

19.
Micromechanical finite element methods are developed based on a nonlinear constitutive model of ferroelectric polycrystals. Electromechanical behaviors ahead of an internal electrode tip are numerically simulated in multilayer ferroelectric actuators. Around the electrode edge, the nonuniform electric field generates a concentration of stress due to the incompatible strain as well as spontaneous strain. The preferred domain switching enhances the concentration of residual stress and may cause the actuators to crack. An electrically permeable crack emanating from an internal electrode is analyzed. A large scale domain switching zone is found in the vicinity of crack tips. The larger the actuating strain and electric field are, the larger the switching zone will be. The size of switching zone even reaches the scale of crack length with increasing electromechanical loading.  相似文献   

20.
APPLICATIONOFTHEPROBABILISTICFRACTUREMECHANICSMETHODOFPREDICTINGTHEFATIGUELIFEOFTUBULARJOINTSNieGuo-hua(聂国华)WengZhi-yuan(翁智远)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号