首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of ruthenium(II) complexes [RuHX(CO)(EPh3)2(B)] (X = H or Cl; B = EPh3, pyridine (py) or piperidine (pip); E = P or As) with bidentate Schiff base ligands derived by condensingo- hydroxyacetophenone with aniline,o- orp-methylaniline have been carried out. The products were characterized by analytical, IR, electronic and1H-NMR spectral studies and are formulated as [Ru(X)(CO) (L)(EPh3)(B)] (L = Schiff base anion; X = H or Cl; B = EPh3, py or pip; E = P or As). An octahedral structure has been tentatively proposed for the new complexes. The new complexes were tested for their catalytic activities in the oxidation of benzyl alcohol to benzaldehyde.  相似文献   

2.
The synthesis and characterisation of some new hexa-coordinated Schiff base complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3 or AsPh3 or py or pip; L = anion of the Schiff bases derived from 2-hydroxy-1-naphthaldehyde and aniline, 4-chloroaniline or 2-methylaniline) are reported. I.r., electronic, 1H-n.m.r, 31P-n.m.r. spectra, catalytic activity and antibacterial activity of the complexes are discussed. An octahedral structure has been tentatively proposed for all the complexes.  相似文献   

3.
Hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(PPh3)(Z)(L)] [Z = PPh3, pyridine (py) or piperidine (pip); L = anion of the Schiff base] have been prepared by reacting [RuHCl(CO)(PPh3)2(Z)] with tridentate Schiff bases derived by condensing anthranilic acid with acetylacetone, salicylaldehyde, o-vanillin and o-hydroxyacetophenone. The complexes were characterised by analytical and spectral (i.r., electronic, 1H- and 31P-n.m.r.) data, and were found to be effective catalysts for oxidising primary alcohols to aldehydes in the presence of N-methylmorpholine-N-oxide (NMO) as co-oxidant. The Schiff bases and their ruthenium(II) complexes show growth inhibitory activity against pathogenic fungi Aspergillus flavus, Fusarium oxysporium and Rhizoctonia solani.  相似文献   

4.
Stable ruthenium(II) complexes of Schiff bases have been prepared by reacting [RuHCl(CO)(PPh3)2(B)] (B = PPh3, pyridine or piperidine) with bis(o-vanillin)ethylenediimine (valen), bis(o-vanillin)propylene-diimine (valpn), bis(o-vanillin)tetramethylenediimine (valtn), bis(o-vanillin)o-phenylenediimine (valphn), bis(salicylaldehyde)tetramethylenediimine (saltn) and bis(salicylaldehyde)o-phenylenediimine (salphn). These complexes have been characterised by elemental analyses, i.r., electronic, 1H- and 31P{1H}-n.m.r. spectral studies. In all the above reactions, the Schiff bases replace two molecules of Ph3P, a hydride and a halide ion from the starting complexes, indicating that the Ru–N bonds present in the complexes containing heterocyclic nitrogen bases are stronger than the Ru–P bond to Ph3P. The new complexes of the general formula [Ru(CO)(B)(L)] (B = PPh3, py or pip; L = tetradentate Schiff bases) have been assigned an octahedral structure. Some of the Schiff bases and the new complexes have been tested against the pathogenic fungus Fusarium sp.  相似文献   

5.
The reactions of ruthenium(II) complexes, [RuHCl(CO)(PPh3)2(B)] [B = PPh3, pyridine (py) or piperidine (pip)], with bidentate Schiff base ligands derived by condensing salicylaldehyde with aniline, o-, m- or p-toluidine have been carried out. The products were characterised by analytical, i.r., electronic, 1H-n.m.r. and 31P-n.m.r. spectral studies and are formulated as [RuCl(CO)(L)(PPh3)(B)] (L = Schiff base anion; B = PPh3, py or pip). An octahedral structure has been tentatively proposed for the new complexes. The Schiff bases and the new complexes were tested in vitro to evaluate their activity against the fungus Aspergillus flavus.  相似文献   

6.
The products obtained by reacting ruthenium (II) complexes [RuHCl(CO)(PPh3)2(B)] [B = PPh3, pyridine (py) or piperidine (pip)] with tridentate Schiff base ligands derived by condensing salicylaldehyde or o-vanillin with o-aminophenol and o-aminothiophenol, have been characterised by analytical, i.r., electronic, 1H-n.m.r. and 31P-n.m.r. spectral studies and formulated as [Ru(L)(CO)(PPh3)(B)] (L = bifunctional tridentate Schiff base anion, B = PPh3, py or pip). An octahedral structure has been tentatively proposed for the new complexes. Some have been tested for the in vitro growth inhibitory activity against bacteria Escherichia coli, Bacillus sp. and Pseudomonas sp.  相似文献   

7.
The reactions of [RuHCl(CO)(B)(EPh3)2] (B = EPh3 or Py; E = P or As) and Schiff bases in 1:1 molar ratio led to the formation of [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = Schiff base ligand). The new complexes have been characterized by analytical and spectroscopic (IR, electronic and 1H NMR) data. They have been assigned an octahedral structure. The new complexes were found to catalyse the transfer hydrogenation of ketones.  相似文献   

8.
Reactions of ruthenium(II) carbonyl complexes of the type [RuHCl(CO)(PPh3)2(B)] [B?=?PPh3, pyridine (py), piperidine (pip) or morpholine (mor)] with bidentate Schiff base ligands derived from the condensation of 2-hydroxy-1-naphthaldehyde with aniline, o-, m- or p-toluidine in a 1?:?1 mol ratio in benzene resulted in the formation of complexes formulated as [RuCl(CO)(L)(PPh3)(B)] [L?=?bidentate Schiff base anion, B?=?PPh3, py, pip, mor]. The complexes were characterized by analyses, IR, electronic and 1H NMR spectroscopy, and cyclic voltammetric studies. In all cases, the Schiff bases replace one molecule of phosphine and a hydride ion from the starting complexes, indicating that Ru–N bonds in the complexes containing heterocyclic nitrogenous bases are stronger than the Ru–P bond to PPh3. Octahedral geometry is proposed for the complexes.  相似文献   

9.
A series of six-coordinate ruthenium(II) complexes [Ru(CO)(L x )(B)] (B = PPh3, AsPh3 or Py; L x = unsymmetrical tetradentate Schiff base, x = 5–8; L5= salen-2-hyna, L6= Cl-salen-2-hyna, L7= valen-2-hyna, L8= o-hyac-2-hyna) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As) with unsymmetrical Schiff bases in benzene under reflux. The new complexes have been characterized by analytical and spectroscopic (infrared, electronic, 1H, 31P, and 13C NMR) data. An octahedral structure has been assigned for all the complexes. The new complexes are efficient catalysts for the transfer hydrogenation of ketones and also exhibit catalytic activity for the carbon–carbon coupling reactions.  相似文献   

10.
New ruthenium(II) complexes, [Ru(CO)(B)(LL)(PPh3)] (where, LL = tridentate Schiff bases; B = PPh3, pyridine, piperidine or morpholine) have been prepared by reacting [RuHCl(CO)(PPh3)3] or [RuHCl(CO)(PPh3)2(B)] with Schiff bases containing donor groups (O, N, X) viz., salicylaldehyde thiosemicarbazone (X = S), salicylaldehyde semicarbazone (X = O), o-hydroxyacetophenone thiosemicarbazone (X = S) and o-hydroxyacetophenone semicarbazone (X = O). The new complexes were characterised by elemental analysis, spectral (i.r., 1H- and 31P-n.m.r.), data.  相似文献   

11.
A series of new hexa‐coordinated ruthenium(II) hydroxyquinoline–thiosemicarbazone complexes of the type [Ru(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = hydroxyquinoline–thiosemicarbazone) were synthesized by reacting ruthenium precursor complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with hydroxyquinoline–thiosemicarbazone ligands in ethanol. The new complexes were characterized by analytical and spectroscopic (FT‐IR, UV–visible, NMR (1H, 13C and 31P) and fast atom bombardment (FAB)–mass spectrometric methods. Based on the spectral results, an octahedral geometry was assigned for all the complexes. The new complexes showed good catalytic activity for the conversion of aldehydes to amides in the presence of hydroxylamine hydrochloride–sodium bicarbonate and for the oxidation of alkanes into their corresponding alcohols and ketones in the presence of m‐chloroperbenzoic acid. The complexes also catalyzed the N‐alkylation of benzylamine in the presence of KOtBu in alcohol medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A series of new hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = chalcone thiosemicarbazone) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with chalcone thiosemicarbazones in benzene under reflux. The new complexes have been characterized by analytical and spectroscopic (IR, UV-vis, 1H, 31P and 13C NMR) methods. On the basis of data obtained, an octahedral structure was assigned for all of the complexes. The chalcone thiosemicarbazones behave as dianionic tridentate O, N, S donors and coordinate to ruthenium via the phenolic oxygen of chalcone, the imine nitrogen of thiosemicarbazone and thienol sulfur. The new complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols to their corresponding aldehydes and ketones and they were also found to be efficient catalysts for the transfer hydrogenation of carbonyl compounds.  相似文献   

13.
Stable ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′‐hydroxychalcones) were synthesized from the reaction of [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′‐hydroxychalcones in benzene under reflux. The new complexes were characterized by analytical and spectroscopic (IR, electronic 1H, 31P and 13C NMR) data. They were assigned an octahedral structure. The complexes exhibited catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N‐methylmorpholine‐N‐oxide (NMO) as co‐oxidant and were also found to be efficient transfer hydrogenation catalysts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Ruthenium(II) carbonyl complexes of general formula [Ru(CO)(B)(L)] [where B = PPh3, pyridine (py), piperidine (pip); L = the dianionic tetradentate Schiff bases derived from the condensation of acetylacetone or benzoylacetone with ethylenediamine, propylenediamine or trimethylenediamine] have been synthesised by reacting [RuHCl(CO)(PPh3)2(B)] (B = PPh3, py or pip) with bis(acetylacetone)ethylenediimine, bis(acetylacetone)propylenediimine, bis(acetylacetone)trimethylenedi- imine, bis(benzoylacetone)ethylenediimine, bis(benzoylacetone)propylenediimine or bis(benzoylacetone)trimethylenediimine. The complexes were characterised onthe basis of elemental analyses, i.r., electronic and 1H- and 31P{1H}-n.m.r. spectral studies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Several new hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(LL)(B)] (where, LL = anthacac, anthdibm, 2-amtpacac or 2-amtpdibm; B = PPh3 or py or pip or morph) have been prepared by reacting [RuHCl(CO)(PPh3)3] or [RuHCl(CO)(PPh3)2(B)] with tetradentate Schiff bases such as bis(anthranilic acid)acetylacetimine (H2-anthacac), bis(anthranilic acid) dibenzoylmethimine (H2-anthdibm), bis(2-aminothiophenol) acetylacetimine (H2-2-amptacac) or bis(2-aminothiophenol) dibenzoylmethimine (H2-2-amtpdibm). The complexes have been characterised by elemental analyses and spectral (i.r., electronic spectra, 1H- and 31P-n.m.r.) data. An octahedral structure has been tentatively proposed for the complexes, which were also tested for their antibacterial properties.  相似文献   

16.
Complexes of the type [Ru(CO)(EPh(3))(B)(L)] (E = P or As; B = PPh(3), AsPh(3), py or pip; L=dianion of the Schiff bases derived from thiosemicarbazone with acetoacetanilide, acetoacet-o-toluidide and o-chloro acetoacetanilide) have been synthesized from the reactions of equimolar amounts of [RuHCl(CO)(EPh(3))(2)(B)] and Schiff bases in benzene. The new complexes have been characterized by analytical and spectral (IR, electronic, NMR) data. The arrangement of PPh(3) groups around ruthenium metal was determined from (31)P NMR spectra. An octahedral structure has been assigned for all the new complexes. All the complexes exhibited catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in presence of N-methylmorpholine-N-oxide as co-oxidant. The complexes also exhibited antibacterial activity against E. coli, Aeromonas hydrophilla and Salmonella typhi. The activity was compared with standard streptomycin.  相似文献   

17.
A series of new hexa-coordinated ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′-hydroxychalcones) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′-hydroxychalcones in benzene under reflux. The new complexes have been characterized by analytical and spectral (IR, electronic, 1H, 31P and 13C NMR) data. Based on the above data, an octahedral structure has been assigned for all the complexes. The new complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide (NMO) as co-oxidant and also found efficient catalyst in the transfer hydrogenation of ketones. The antifungal properties of the complexes have also been examined and compared with standard Bavistin.  相似文献   

18.
The synthesis and characterization of several hexa‐coordinated ruthenium(III) Schiff base complexes of the type [RuX(EPh3)(L)] (X = Cl or Br; E = P or As; L = dianion of the tetradentate Schiff base) are reported. IR, EPR, electronic spectra and cyclic voltammetric data of the complexes are discussed. An octahedral geometry has been tentatively proposed for all of these complexes. The new complexes have been subjected to catalytic activity in the reaction of oxidation of alcohols in the presence of N‐methylmorpholine‐N‐oxide. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
A new series of hexa‐coordinated stable Ru(III) Schiff base complexes of the type [RuX(EPh3)(L)] (where X = Cl/Br; E = P/As; L = tetradentate N2O2 donor Schiff ligands) have been synthesized and characterized by elemental analysis, magnetic susceptibility measurement, FT‐IR, UV–vis, 13C{1H}‐NMR, ESR spectra, electrochemical and powder X‐ray diffraction pattern studies. The selective oxidation of alcohols to their corresponding carbonyl compounds occurred in the presence of N‐methylmorpholin‐N‐oxide (NMO), H2O2 and O2 atmosphere at ambient temperature as co‐oxidants and C? C coupling reactions. Further, these new Schiff base ligands and their Ru(III) complexes were also screened for their antibacterial activity against K. pneumoniae, Shigella sp., M. luteus, E. coli and S. typhi. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The reaction of the Schiff bases (obtained by condensing isatin with o‐aminophenol/o‐aminothiophenol/o‐aminobenzoic acid) with [RuX3(EPh3)3] (where X = Cl/Br; E = P/As) in benzene afforded new, air‐stable Ru(III) complexes of the general formula [Ru(L)X(EPh3)2] (L = dianion of tridentate Schiff bases). In all these reactions, the Schiff base ligand replaces one triphenylphosphine/triphenylarsine and two chlorides/bromides from the ruthenium precursors. The complexes were characterized by elemental analyses, spectral (FT–IR, UV–vis, 1H and 13C NMR for the ligands, and EPR) and electrochemical studies. All the metal complexes exhibit characteristic LMCT absorption bands in the visible region. The catalytic reactivity proved these complexes to be efficient catalysts in the oxidation of alcohols and C? C coupling. All the complexes were screened for their biocidal efficiency against bacteria such as Staphylococcus epidermidis and Escherichia coli and fungi such as Botrytis cinerea and Aspergillus niger at 0.25, 0.50 and 1% concentrations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号