首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electronic Structures of Highly Symmetrical Compounds of f Elements. 36 [1] Parametric Analysis of the Optical Spectra of an Oriented Tris(hydrotris(1‐pyrazolyl)borato)praseodymium(III) Single Crystal The absorption and luminescence spectra of polycrystalline tris(hydrotris(1‐pyrazolyl)borato)‐praseodymium(III) (PrTp3) were measured at room temperature as well as at low temperatures. At room temperature the “polarized” luminescence spectra of a small oriented PrTp3 single crystal could also be recorded. On the basis of these spectroscopic findings the underlying crystal field splitting pattern could be derived, and simulated by fitting the free parameters of a phenomenological Hamiltonian, achieving a reduced r.m.s. deviation of 17.3 cm—1 for 37 assignments. On the basis of the parameters used, the global ligand field strength experienced by the Pr3+ central ion as well as the individual ligand field strength associated with one Tp ligand are determined, nephelauxetic and relativistic nephelauxetic effects are estimated, and the experimentally orientiented nonrelativistic and relativistic molecular orbital schemes in the f range are set up.  相似文献   

2.
Electronic Structures of Highly Symmetrical Compounds of f Elements. 38 [1] Crystal, Molecular and Electronic Structure of Tris(hydrotris(1‐pyrazolyl)borato)samarium(III) Tris(hydrotris(1‐pyrazolyl)borato)samarium(III) (SmTp3) crystallizes in the space group P63/m (No. 176) with two molecules in the unit cell. The Sm3+ central ion is coordinated by nine N atoms in the shape of a tricapped trigonal prism, leading to an effective crystal field (CF) of D3h symmetry. The underlying CF splitting pattern was extracted from the absorption and luminescence spectra run at room and low temperatures, and simulated by fitting the free parameters of a phenomenological Hamiltonian achieving an r.m.s. deviation of 9.4 cm?1 for 58 assignments. The parameters used allow the estimation of the global ligand field strength experienced by the Sm3+ central ion, the insertion of SmTp3 into empirical nephelauxetic and relativistic nephelauxetic series, and the set‐up of experimentally based nonrelativistic and relativistic molecular orbital schemes in the f range.  相似文献   

3.
A series of homoleptic complexes of hexacoordinate cobalt(II) and copper(II) complexes with 3,5-disubstituted homo- and heteroscorpionate tris(pyrazolyl)borate anionic ligands (Tp′) were synthesized, i.e. bis[hydrotris(3-phenyl,5-methylpyrazol-1-yl)borato]cobalt(II), bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]cobalt(II) and bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]copper(II) and their structures were elucidated crystallographically. The complexes were also formed spontaneously during attempted metathesis of the corresponding Tp′M(NCS) complexes into Tp′M(OOCCH(OH)CH3) complexes. In the case of the analogous conversion applied for the thiocyanato [hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3,5-dimethylpyrazol-1-yl)boratocobalt(II) complex with sodium carboxylates (lactate, pyruvate and 2-hydroxybutyrate), the cross-transfer of pyrazolyl residues between starting anionic ligands was observed resulting in formation of bis-ligand homo- and heteroleptic Tp′CoTp″ complexes, where Tp′, Tp″ were tris(pyrazolyl)borates composed of n 3(5)-phenyl,5(3)-methylpyrazolyl and (3−n) 3,5-dimethylpyrazolyl residues (n=0–3) identified by mass spectrometry. Metathesis of thiocyanate in thiocyanato hydrotris(3-phenyl,5-methylpyrazol-1-yl)boratocobalt(II) into pyruvate led to the isolation of stable the pyruvato hydrotris(3-phenyl,5-methylpyrazol-1-yl)boratocobalt(II) complex, the structure of which was determined crystallographically. The Tp′ ligands are η3 coordinated to metal ions in every case, whereas the pyruvate anion is coordinated through carboxylate and carbonyl oxygen atoms to the cobalt center. Two rotational isomers distinguishable by 1H NMR spectroscopy for the hexacoordinate bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]cobalt(II) complex were detected in solution.  相似文献   

4.
采用密度泛函理论以及B3LYP方法和单激发组态相互作用(CIS)方法分别优化了一系列[Os(II)(CO)3(tfa)(L)](tfa为三氟乙酸; L=O^O(1), O^N(2), N^N(3), 其中O^O为六氟乙酰丙酮, O^N为羟基喹啉, N^N为3-(三氟甲基)-5-(2-吡啶基)吡唑)配合物的基态和激发态结构. 利用含时密度泛函理论(TD-DFT)结合极化连续溶剂化模型(PCM)计算了配合物在CH2Cl2溶液中的吸收和发射光谱. 研究结果表明, 优化得到的几何结构参数和相应的实验值符合得非常好, 激发态几何构型相对基态变化较小, 这与实验上观察到的较小的斯托克斯频移现象一致. 配合物1-3的最低能吸收分别在342、431和329 nm, 其磷光发射分别在521、638 和488 nm. 配合物1-3的最高占据分子轨道和最低空轨道主要表现为L配体的π和π*轨道特征, 所以它们的最低能吸收归属于π-π*电荷跃迁, 并混有少量的金属到配体的电荷跃迁(MLCT)和配体之间电荷跃迁(LLCT)微扰, 且其高能吸收也表现为配体内部(IL)和配体间(LL)的电荷跃迁. 此外, 它们的磷光发射和吸收有相似的跃迁特征.  相似文献   

5.
采用密度泛函的B3LYP和UB3LYP方法分别优化了一系列[Ru(iph)(L)2]2+ (L=cpy (1), mpy (2), npy (3); 其中iph为2,9-双(1′-甲基-2′-咪唑)-1,10-邻二氮杂菲, cpy为4-氰基嘧啶, mpy为4-甲基嘧啶, npy为4-氮二甲基嘧啶)配合物的基态和激发态结构. 利用含时密度泛函理论(TD-DFT)方法, 结合极化连续介质(PCM)模型计算了它们在丙酮溶液中的吸收和发射光谱. 研究结果表明: 优化得到的几何结构参数和相应的实验值符合得非常好. 1和2的最高占据分子轨道主要由金属的d轨道和iph配体的π轨道构成, 但是3主要占据在npy配体上, 而它们的最低空轨道主要由iph配体的π反键轨道占据. 因此, 1和2的最低能吸收和发射属于金属到配体(MLCT)和配体内部(ILCT)的电荷转移跃迁, 而3属于两个配体之间的电荷转移(LLCT)跃迁. 三个配合物的最低能吸收分别在509 nm (1), 527 nm (2)和563 nm (3), 其磷光发射分别在683 nm (1), 852 nm (2)和757 nm (3). 这显示出通过调节L配体的π电子给予能力可以改变最低能吸收和发射的跃迁性质和发光颜色.  相似文献   

6.
The low‐lying electronic excited states of [Re(imidazole)(CO)3(phen)]+ (phen = 1,10‐phenanthroline) ranging between 420 nm and 330 nm have been calculated by means of relativistic spin‐orbit time‐dependent density functional theory (TD‐DFT) and wavefunction approaches (state‐average‐CASSCF/CASPT2). A direct comparison between the theoretical absorption spectra obtained with different methods including SOC and solvent corrections for water points to the difficulties at describing on the same footing the bands generated by metal‐to‐ligand charge transfer (MLCT), intraligand (IL) transition, and ligand‐to‐Ligand‐ charge transfer (LLCT). While TD‐DFT and three‐roots‐state‐average CASSCF (10,10) reproduce rather well the lowest broad MLCT band observed in the experimental spectrum between 420 nm and 330 nm, more flexible wavefunctions enlarged either by the number of roots or by the number of active orbitals and electrons destabilize the MLCT states by introducing IL and LLCT character in the lowest part of the absorption spectrum. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
The series of novel rhenium(I) tricarbonyl mixed-ligand complexes Re(X)(CO)(3)(N^N) (N^N = pyridine-2-aldoxime; X = -Cl, 1; X = -CN, 2; and X = -C≡C, 3) has been investigated theoretically to explore the ligand X effect on their electronic structures and spectroscopic properties. The contribution of the X ligand to the highest occupied molecular orbital (HOMO) and HOMO-1 decreases in the order of 3 > 1 > 2, in line with the π-donating abilities of the X: -C≡C > -Cl > -CN. The reorganization energy (λ) calculations show that 1 and 3 will result in the higher efficiency of organic light-emitting diodes than 2. The lowest-lying absorptions of 1 and 3 can be assigned to the {[d(xz), d(yz)(Re) + π(CO) + π(X)] → [π* (N^N)]} transition with mixing metal-to-ligand, ligand-to-ligand, and X ligand-to-ligand charge transfer (MLCT/LLCT/XLCT) character, whereas this absorption at 354 nm (H-1 → L) of 2 is assigned to {[d(xz), d(yz)(Re) + π(CO) + π(N^N)] → [π* (N^N)]} transition with MLCT/LLCT/ILCT (intraligand charge transfer). Furthermore, the absorptions are red-shifted in the order 2, 1, and 3, with the increase of π-donating abilities of X ligands. The solvent effects cause red shifts of the absorption and emission spectra with decreasing solvent polarity.  相似文献   

8.
The application of the reagent (Ipc)BCl(2) (Ipc = isopinocampheyl) in the synthesis of a new tris(pyrazolyl)borate ligand having an Ipc substituent on boron is described. The sodium salt is a convenient precursor for the preparation of the complexes [(Ipc)tris(pyrazolyl)borato]tricarbonylmanganese and [[(Ipc)tris(pyrazolyl)borato](p-cymene)ruthenium](+), whose X-ray crystal structures are reported. While little distortion of the B(pz)(3)M unit is observed in these complexes, steric interaction between the Ipc group and the 3-positions of the pyrazolyl rings is noted to lead to distortion of the angles around the B-C bond.  相似文献   

9.
Copper(I) coordination complexes of the anionic fluorinated ligand, hydrotris(3-trifluoromethyl-5-methyl-1-pyrazolyl)borate (L0f), i.e. the copper(I) carbonyl complex, [CuI(L0f)(CO)] (1), the copper(I) triphenylphosphine complex, [CuI(L0f)(PPh3)] (2), the copper(I) acetonitrile complex, [CuI(L0f)(NCMe)] (3), and the corresponding copper(I) triphenylphosphine complex with hydrotris(3,5-diisopropyl-1-pyrazolyl)-borate anion (L1), i.e. [CuI(L1)(PPh3)] (4), were synthesized in order to investigate the influence of the electron-withdrawing groups on the pyrazolyl rings. The structures of complexes 1, 2, and 4 were determined by X-ray crystallography. While X-ray crystallography did not show definitive trends in terms of copper(I) atom geometry, the clear influence of the electronic structure of the pyrazolyl rings is observed by spectroscopic techniques, namely, IR and multinuclear NMR spectroscopy. Finally, the relative stability of the copper(I) complexes is discussed.  相似文献   

10.
Ultrafast photochemistry of the complexes trans(X,X)-[Ru(X)(2)(CO)(2)(bpy)] (X = Cl, Br, I) was studied in order to understand excited-state reactivity of equatorial CO ligands, coordinated trans to the 2,2'-bipyridine ligand (bpy). TD-DFT calculations have identified the lowest electronic transitions and singlet excited states as mixed X -->bpy/Ru --> bpy ligand to ligand/metal to ligand charge transfer (LLCT/MLCT). Picosecond time-resolved IR spectroscopy in the region of nu(CO) vibrations has revealed that, for X = Cl and Br, subpicosecond CO dissociation is accompanied by bending of the X-Ru-X moiety, producing a pentacoordinated intermediate trans(X,X)-[Ru(X)(2)(CO)(bpy)]. Final movement of an axial halide ligand to the vacant equatorial position and solvent (CH(3)CN) coordination follows with a time constant of 13-15 ps, forming the photoproduct cis(X,X)-[Ru(X)(2)(CO)(CH(3)CN)(bpy)]. For X = I, the optically populated (1)LLCT/MLCT excited state undergoes a simultaneous subpicosecond CO dissociation and relaxation to a triplet IRuI-localized excited state which involves population of an orbital that is sigma-antibonding with respect to the axial I-Ru-I bonds. Vibrationally relaxed photoproduct cis(I,I)-[Ru(I)(2)(CO)(CH(3)CN)(bpy)] is formed with a time constant of ca. 55 ps. The triplet excited state is unreactive, decaying to the ground state with a 155 ps lifetime. The experimentally observed photochemical intermediates and excited states were assigned by comparing calculated (DFT) and experimental IR spectra. The different behavior of the chloro and bromo complexes from that of the iodo complex is caused by different characters of the lowest triplet excited states.  相似文献   

11.
Hydrotris(triazolyl)borate (Ttz) ligands form CuNO(x) (x = 2, 3) complexes for structural and functional models of copper nitrite reductase. These complexes have distinct properties relative to complexes of hydrotris(pyrazolyl)borate (Tp) and neutral tridentate N-donor ligands. The electron paramagnetic resonance spectra of five-coordinate copper complexes show rare nitrogen superhyperfine couplings with the Ttz ligand, indicating strong σ donation. The copper(I) nitrite complex [PPN](+)[(Ttz(tBu,Me))Cu(I)NO(2)](-) has been synthesized and characterized and allows for the stoichiometric reduction of NO(2)(-) to NO with H(+) addition. Anionic Cu(I) nitrite complexes are unusual and are stabilized here for the first time because Ttz is a good π acceptor.  相似文献   

12.
A series of Cu(II) complexes Cu(2)[micro-pz](2)[HB(pz)(3)](2) (1), Cu[H(2)B(pz)(2)](2) (2), Cu[HB(pz)(3)](2) (3), Cu[HB(pz(Me2))(3)](2) (4), Cu[B(pz)(4)](2) (5) (pz=pyrazole), have been synthesized and characterized by elemental analysis, IR, UV-vis, X-ray diffraction, thermal analysis and theoretical analysis. The IR spectra give the Cu-N vibration modes at 322, 366, 344, 387, and 380 cm(-1) in complexes 1-5, respectively. The UV spectra show all the complexes have same UV absorption at 232 nm; there is another band at 332 nm for complexes 1, 2 and 4, while for complexes 3 and 5, the bands are at 272 and 308 nm, respectively. Complex 1 has a binuclear structure in which two pyrazole ligands bridge two Cu-Tp units. In 2-5, the Cu(II) centers are coordinated with dihydrobis(pyrazolyl)borate (Bp), hydrotris(pyrazolyl)borate (Tp), hydrotris(3,5-Me2pyrazolyl)borate (Tp'), tetrakis(pyrazolyl)borate (Tkp) respectively to form a mononuclear structure. The results of thermal analysis for complexes 1-5 are discussed too.  相似文献   

13.
Treatment of the heterocycle 5-thioxo-4,5-dihydro-3,4-dimethyl-1,2,4-triazole (thioxotriazole) with sodium tetrahydroborate at 210 degrees C provides the new [N(3)/S(3)] ambidentate tripod ligand hydridotris(thioxotriazolyl)borate (Tt) as its sodium complex salt. Complexes of this ligand with sodium, bismuth(III), tin(IV), and manganese(I) have been synthesized and characterized by X-ray crystallography. The structures of these complexes illustrate the ambidentate character of the ligand with the softer metals bismuth and tin exhibiting sulfur coordination, while sodium and manganese(I) bond via the ligand nitrogen donors. In the [S(3)] coordination mode the ligand creates eight-membered chelate rings with the metal with the consequence that the metal ligand unit adopts a propeller-type conformation with C(3)-symmetry. However, in the [N(3)] mode six-membered chelate rings are formed analogous to the familiar hydrotris(pyrazolyl)borate (Tp) ligand.  相似文献   

14.
UV-vis absorption and picosecond time-resolved IR (TRIR) spectra of amido and phosphido complexes fac-[Re(ER2)(CO)3(bpy)] (ER2 = NHPh, NTol2, PPh2, bpy = 2,2'-bipyridine, Tol = 4-methylphenyl) were investigated in conjunction with DFT and TD-DFT calculations in order to understand their ground-state electronic structure, low-lying electronic transitions and excited-state character and dynamics. The HOMO is localized at the amido/phosphido ligand. Amide and phosphide ligands are sigma-bonded to Re, the pi interaction being negligible. Absorption spectra show a weak band at low energies (1.7-2.1 eV) that arises from essentially pure ER(2) --> bpy ligand-to-ligand charge transfer (LLCT). The lowest excited state is the corresponding triplet, (3)LLCT. Low triplet energies and large distortions diminish the excited-state lifetimes to 85 and 270 ps for NHPh and NTol(2), respectively, and to ca. 30 ps for PPh2. nu(CO) vibrations undergo only very small ( bpy MLCT character, is a unique feature of the amido/phoshido complexes, whose lowest excited state can be viewed as containing a highly unusual aminyl/phosphinyl radical-cationic ligand. For comparison, the amino and phosphino complexes fac-[Re(NHPh(2))(CO)3(bpy)]+ and fac-[Re(PPh3)(CO)3(bpy)]+ are shown to have the usual Re --> bpy (3)MLCT lowest excited states, characterized by upshifted nu(CO) bands.  相似文献   

15.
Li MX  Zhou X  Xia BH  Zhang HX  Pan QJ  Liu T  Fu HG  Sun CC 《Inorganic chemistry》2008,47(7):2312-2324
A series of ruthenium(II) complexes, [Ru(tcterpy)(NCS)3](4-) (0H), [Ru(Htcterpy)(NCS)3](3-) (1H), [Ru(H2tcterpy)(NCS)3](2-) (2H), and [Ru(H3tcterpy)(NCS)3](-) (3H) (tcterpy = 4,4',4'-tricarboxy-2,2':6',2'-terpyridine), are investigated theoretically to explore their electronic structures and spectroscopic properties. The geometry structures of the complexes in the ground and excited states are optimized by the density functional theory and single-excitation configuration interaction methods, respectively. The absorption and emission spectra of the complexes in gas phase and solutions (ethanol and water) are predicted at the TDDFT(B3LYP) level. The calculations indicate that the protonation effect slightly affects the geometry structures of the complexes in the ground and excited states but leads to significant change in the electronic structures. In cases of both absorptions and emissions, the energy levels of HOMOs and LUMOs for 0H-3H decrease dramatically as a result of the introduction of the COOH groups. The protonation much stabilizes the unoccupied orbitals with respect to the occupied orbitals. Thus, both the absorptions and emissions are red-shifted from 0H to 3H. The phosphorescence of 0H-3H are attributed to tcterpyridine --> d(Ru)/NCS ((3)MLCT/(3)LLCT) transitions. The solvent media can influence the molecular orbital distribution of the complexes; as a consequence, the spectra calculated in the presence of the solvent are in good agreement with the experimental results. The MLCT/LLCT absorptions of 0H in ethanol and water are red-shifted relative to that in the gas phase. However, the MLCT/LLCT absorptions of the protonated complexes (1H-3H) are blue-shifted in ethanol and water with respect to the gas phase. Similarly, the solvent effect causes a blue-shift of the phosphorescent emission for 0H-3H.  相似文献   

16.
Metallamacrocycles 1, 2, and 3 of the general formula [{Ir(ppy)(2)}(2)(μ-BL)(2)](OTf)(2) (ppyH = 2-phenyl pyridine; BL = 1,2-bis(4-pyridyl)ethane (bpa) (1), 1,3-bis(4-pyridyl)propane (bpp) (2), and trans-1,2-bis(4-pyridyl)ethylene (bpe) (3)) have been synthesized by the reaction of [{(ppy)(2)Ir}(2)(μ-Cl)(2)], first with AgOTf to effect dechlorination and later with various bridging ligands. Open-frame dimers [{Ir(ppy)(2)}(2)(μ-BL)](OTf)(2) were obtained in a similar manner by utilizing N,N'-bis(2-pyridyl)methylene-hydrazine (abp) and N,N'-(bis(2-pyridyl)formylidene)ethane-1,2-diamine (bpfd) (for compounds 4 and 5, respectively) as bridging ligands. Molecular structures of 1, 3, 4, and 5 were established by X-ray crystallography. Cyclic voltammetry experiments reveal weakly interacting "Ir(ppy)(2)" units bridged by ethylene-linked bpe ligand in 3; on the contrary the metal centers are electronically isolated in 1 and 2 where the bridging ligands are based on ethane and propane linkers. The dimer 4 exhibits two accessible reversible reduction couples separated by 570 mV indicating the stability of the one-electron reduced species located on the diimine-based bridge abp. The "Ir(ppy)(2)" units in compound 5 are noninteracting as the electronic conduit is truncated by the ethane spacer in the bpfd bridge. The dinuclear compounds 1-5 show ligand centered (LC) transitions involving ppy ligands and mixed metal to ligand/ligand to ligand charge transfer (MLCT/LLCT) transitions involving both the cyclometalating ppy and bridging ligands (BL) in the UV-vis spectra. For the conjugated bridge bpe in compound 3 and abp in compound 4, the lowest-energy charge-transfer absorptions are red-shifted with enhanced intensity. In accordance with their similar electronic structures, compounds 1 and 2 exhibit identical emissions. The presence of vibronic structures in these compounds indicates a predominantly (3)LC excited states. On the contrary, broad and unstructured phosphorescence bands in compounds 3-5 strongly suggest emissive states of mixed (3)MLCT/(3)LLCT character. Density functional theory (DFT) calculations have been carried out to gain insight on the frontier orbitals, and to rationalize the electrochemical and photophysical properties of the compounds based on their electronic structures.  相似文献   

17.
Dinuclear Cu(I) complexes with bifunctionalized homoscorpionate ligands, hydrotris(thioxotriazolyl)borato [Li(Tr(Me,o)(-)(Py)) (1) and Li(Tr(Mes,Me)) (2)], and the heteroscorpionate ligand hydro[bis(thioxotriazolyl)-3-(2-pyridyl)pyrazolyl]borato [K(Br(Mes)pz(o)(-)(Py))] (3) were synthesized and crystallographically characterized. The complexes [Cu(Tr(Mes,Me))](2) (4) and [Cu(Tr(Me,o)(-)(Py))](2) (5) exhibit a similar coordination geometry where every metal is surrounded by three thioxo groups in a trigonal arrangement. The presence of a [B-H...Cu] three-center-two-electron interaction in both compounds causes the overall coordination to become tetrahedrally distorted (S(3)H coordination for each metal). The complex [Cu(Br(Mes)pz(o)(-)(Py))](2) (6) presents a trigonal geometry in which the metals interact with two thioxo groups and a bridging pyrazolyl nitrogen atom. A weak contact with a pyridine nitrogen atom completes the coordination of the metals (S(2)N,N' coordination for each metal). [Cu(Tr(Mes,Me))](2), [Cu(Tr(Me,o)(-)(Py))](2), and [Cu(Br(Mes)pz(o)(-)(Py))](2) exhibit fluxional behavior in solution as evidenced by variable-temperature NMR spectroscopy, and for 5 and 6 two species in equilibrium [in the ratio 2/1 for 5 (CDCl(3)) and 3/2 for 6 (CD(2)Cl(2))] are distinguishable in the (1)H NMR spectra at 270 K. 2D-NOESY spectra recorded at 270 K assisted in the attribution of solution molecular geometries for each isomer of 5 and 6. The free energy of activation (DeltaG()(Tc)) was determined for both equilibria from the evaluation of the coalescence temperature. DFT calculations were performed to describe plausible molecular geometry for the minor isomer of 5 and 6 and to propose a possible mechanism of interconversion between major and minor isomers. Cyclic voltammograms were recorded in CH(2)Cl(2) (3 and 6) or CH(2)Cl(2)/CH(3)CN (1/1, v/v) (2, 4, and 5) solutions using 0.1 M TBAHFP or TBAOTf as supporting electrolytes. [Cu(Tr(Mes,Me))](2), [Cu(Tr(Me,o)(-)(Py))](2), and [Cu(Br(Mes)pz(o)(-)(Py))](2) exhibit a quasi-reversible Cu(I)/Cu(II) redox behavior with E(pa) = +719 mV and E(pc) = +538 mV for 4, E(pa) = +636 mV and E(pc) = -316 mV for 5, and E(pa) = +418 mV and E(pc) = -319 mV for 6.  相似文献   

18.
Copper(I) complexes with tripodal nitrogen-containing neutral ligands such as tris(3,5-diisopropyl-1-pyrazolyl)methane (L1') and tris(3-tertiary-butyl-5-isopropyl-1-pyrazolyl)methane (L3'), and with corresponding anionic ligands such as hydrotris(3,5-diisopropyl-1-pyrazolyl)borate (L1-) and hydrotris(3-tertiary-butyl-5-isopropyl-1-pyrazolyl)borate (L3-) were synthesized and structurally characterized. Copper(I) complexes [Cu(L1')Cl] (1), [Cu(L1')(OClO3)] (2), [Cu(L1')(NCMe)](PF6) (3a), [Cu(L1')(NCMe)](ClO4) (3b), [Cu(L1')(CO)](PF6) (4a), and [Cu(L1')(CO)](ClO4) (4b) were prepared using the ligand L1'. Copper(I) complexes [Cu(L3')Cl] (5) and [Cu(L3')(NCMe)](PF6) (6) with the ligand L3' were also synthesized. Copper(I) complexes [Cu(L1)(NCMe)] (7) and [Cu(L1)(CO)] (8) were prepared using the anionic ligand L1-. Finally, copper(I) complexes with anionic ligand L3- and acetonitrile (9) and carbon monoxide (10) were synthesized. The complexes obtained were fully characterized by IR, far-IR, 1H NMR, and 13C NMR spectroscopy. The structures of both ligands, L1' and L3', and of complexes 1, 2, 3a, 3b, 4a, 4b, 5, 6, 7, and 10 were determined by X-ray crystallography. The effects of the differences in (a) the fourth ligand and the counteranion, (b) the steric hindrance at the third position of the pyrazolyl rings, and most importantly, (c) the charge of the N3 type ligands, on the structures, spectroscopic properties, and reactivities of the copper(I) complexes are discussed. The observed differences in the reactivities toward O2 of the copper(I) acetonitrile complexes are traced back to differences in the oxidation potentials determined by cyclic voltammetry. A special focus is set on the carbonyl complexes, where the 13C NMR and vibrational data are presented. Density functional theory (DFT) calculations are used to shed light on the differences in CO bonding in the compounds with neutral and anionic N3 ligands. In correlation with the vibrational and electrochemical data of these complexes, it is demonstrated that the C-O stretching vibration is a sensitive probe for the "electron richness" of copper(I) in these compounds.  相似文献   

19.
The reaction of Ln(AlMe(4))(3) with bulky hydrotris(pyrazolyl)borate (Tp(t)(Bu,Me))H proceeds via a sequence of methane elimination and C-H bond activation, affording unprecedented rare-earth metal ligand moieties including Ln(Me)[(micro-Me)AlMe(3)] and X-ray structurally characterized "Tebbe-like" Ln[(micro-CH(2))(2)AlMe(2)].  相似文献   

20.
This study focuses on the geometric (molecular) structures, spectroscopic properties, and electronic structures of copper(II)-nitrito complexes as a function of second coordination sphere effects using a set of closely related coligands. With anionic hydrotris(pyrazolyl)borate ligands, one nitrite is bound to copper(II). Depending on the steric demand of the coligand, the coordination mode is either symmetric or asymmetric bidentate, which leads to different ground states of the resulting complexes as evident from EPR spectroscopy. The vibrational spectra of these compounds are assigned using isotope substitution and DFT calculations. The results demonstrate that nu sym(N-O) occurs at higher energy than nu asym(N-O), which is different from the literature assignments for related compounds. UV-vis absorption and MCD spectra are presented and analyzed with the help of TD-DFT calculations. The principal binding modes of nitrite to Cu(II) and Cu(I) are also investigated applying DFT. Using a neutral tris(pyrazolyl)methane ligand, two nitrite ligands are bound to copper. In this case, a very unusual binding mode is observed where one nitrite is eta1-O and the other one is eta1-N bound. This allows to study the properties of coordinated nitrite as a function of binding mode in one complex. The N-coordination mode is easily identified from vibrational spectroscopy, where N-bound nitrite shows a large shift of nu asym(N-O) to >1400 cm-1, which is a unique spectroscopic feature. The optical spectra of this compound exhibit an intense band around 300 nm, which might be attributable to a nitrite to Cu(II) CT transition. Finally, using a bidentate neutral bis(pyrazolyl)methane ligand, two eta1-O coordinated nitrite ligands are observed. The vibrational and optical (UV-vis and MCD) spectra of this compound are presented and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号