首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Part IIb presents some of the most important theorems for stable equilibrium states that can be deduced from the four postulates of the unified theory presented in Part I. It is shown for the first time that the canonical and grand canonical distributions are the only distributions that are stable. Moreover, it is shown that reversible adiabatic processes exist which cannot be described by the dynamical equation of quantum mechanics. A number of conditions are discussed that must be satisfied by the general equation of motion which is yet to be discovered.Part I of this paper appeared inFound. Phys. 6(1), 15 (1976). Part IIa appeared inFound. Phys. 6(2), 127 (1976). The numbering of the sections, equations, and references in this part of the paper continues from those in Part IIa.  相似文献   

2.
This part of the paper concludes the presentation of the unified theory. It is shown that the theory requires the existence of, and applies only to, irreducible quantal dispersions associated with pure or mixed states. Two experimental procedures are given for the operational verification of such dispersions. Because the existence of irreducible dispersions associated with mixed states is required by Postulate 4 of the theory, and because Postulate 4 expresses the basic implications of the second law of classical thermodynamics, it is concluded that the second law is a manifestation of phenomena characteristic of irreducible quantal dispersions associated with the elementary constituents of matter.Parts I, IIa, and IIb of this paper appeared inFound. Phys. 6, 15, 127, 439 (1976), respectively. The numbering of the sections, equations, and references in this part continues from the previous parts.  相似文献   

3.
相对论粒子的自旋算符   总被引:2,自引:0,他引:2  
发展了关于相对论态自旋算符的系统理论.考虑了具有非零静质量的粒子情况.对带自旋的相对论粒子,通常的自旋算符需换为相对论的自旋算符.在Poincar啨群不可约表示的框架里,构造了适用于粒子任意正则态的自旋算符,称为运动自旋.本文的讨论限于量子力学.随后将在量子场论中对此作进一步深入研究.  相似文献   

4.
Formulation of the conventional quantum mechanics in which a state is described by probability instead of wave function and density matrix is presented. We consider the possibility of constructing the invertable map of spinors onto positive probability distributions. For any value of spin, the basis of the irreducible representation of a rotation group is realized by a family of probability distributions of the spin projection parametrized by points on a sphere. Quantum states of a symmetric top described by the probability distributions are discussed.  相似文献   

5.
Whereas in Dirac quantum mechanics and relativistic quantum field theory one uses Schwartz space distributions, the extensions of the Hilbert space that we propose uses Hardy spaces. The in- and out-Lippmann-Schwinger kets of scattering theory are functionals in two rigged Hilbert space extensions of the same Hilbert space. This hypothesis also allows to introduce generalized vectors corresponding to unstable states, the Gamow kets. Here the relativistic formulation of the theory of unstable states is presented. It is shown that the relativistic Gamow vectors of the unstable states, defined by a resonance pole of the S-matrix, are classified according to the irreducible representations of the semigroup of the Poincaré transformations (into the forward light cone). As an application the problem of the mass definition of the intermediate vector boson Z is discussed and it is argued that only one mass definition leads to the exponential decay law, and that is not the standard definition of the on-the-mass-shell renormalization scheme.  相似文献   

6.
Even for a single isolated constituent of matter, a recent generalization of quantum mechanics, called quantum thermodynamics, postulates the existence of new nonmechanical individual states, not contemplated within conventional quantum mechanics, for which the time evolution is governed by a novel nonlinear equation of motion, which entails an irreversible, energy-preserving internal redistribution mechanism of relaxation towards stable equilibrium. For a single two-level atom interacting with the quantum electromagnetic field, we show that such irreversible internal redistribution mechanism entails interesting corrections to the conventional quantum electrodynamic predictions on absorption, resonance fluorescence, and stimulated emission. For a two-level atom driven near resonance by a nearly monochromatic laser beam, we estimate the corrections implied on the spectral distribution of resonance fluorescence and on the absorption and stimulated emission line shape. We submit that our predictions call for further high-resolution studies of atom-field interactions. For example, the value or a lower bound to the value of the only unknown constant of the theory, namely, the internal redistribution time constant, can only be established by a quantitative experimental study.  相似文献   

7.
8.
In the frame of operator-algebraic quantum statistical mechanics we calculate the grand canonical equilibrium states of a bipartite, microscopic mean-field model for bipolaronic superconductors (or anisotropic antiferromagnetic materials in the quasispin formulation). Depending on temperature and chemical potential, the sets of statistical equilibrium states exhibit four qualitatively different regions, describing the normal, superconducting (spin-flopped), charge ordered (antiferromagnetic), and coexistence phases. Besides phase transitions of the second kind, the model also shows phase transitions of the first kind between the superconducting and the charge ordered phases. A unique limiting Gibbs state is found in its central decomposition for all temperatures, even in the coexistence region, if the thermodynamic limit is performed at fixed particle density (magnetization).  相似文献   

9.
This paper presents the general theory of canonical transformations of coordinates in quantum mechanics. First, the theory is developed in the formalism of phase space quantum mechanics. It is shown that by transforming a star-product, when passing to a new coordinate system, observables and states transform as in classical mechanics, i.e., by composing them with a transformation of coordinates. Then the developed formalism of coordinate transformations is transferred to a standard formulation of quantum mechanics. In addition, the developed theory is illustrated on examples of particular classes of quantum canonical transformations.  相似文献   

10.
The fundamental equations of equilibrium quantum statistical mechanics are derived in the context of a measure-theoretic approach to the quantum mechanical ergodic problem. The method employed is an extension, to quantum mechanical systems, of the techniques developed by R. M. Lewis for establishing the foundations of classical statistical mechanics. The existence of a complete set of commuting observables is assumed, but no reference is made a priori to probability or statistical ensembles. Expressions for infinite-time averages in the microcanonical, canonical, and grand canonical ensembles are developed which reduce to conventional quantum statistical mechanics for systems in equilibrium when the total energy is the only conserved quantity. No attempt is made to extend the formalism at this time to deal with the difficult problem of the approach to equilibrium.  相似文献   

11.
Part II of this three-part paper presents some of the most important theorems that can be deduced from the four postulates of the unified theory discussed in Part I. In Part IIa, it is shown that the maximum energy that can be extracted adiabatically from any system in any state is solely a function of the density operator associated with the state. Moreover, it is shown that for any state of a system, nonequilibrium, equilibrium or stable equilibrium, a unique propertyS exists which is proportional to the total energy of the system minus the maximum energy that can be extracted adiabatically from the system in combination with a reservoir. For statistically independent systems, propertyS is extensive, it is invariant during all reversible processes, and it increases during all irreversible processes.Part I of this paper appeared inFound. Phys. 6(1) (1976). The numbering of the sections, equations, and references in this part of the paper continues from those in Part I.  相似文献   

12.
The application of the conceptual analysis (CA) method outlined in Part I is illustrated on the example of quantum mechanics. In Part II, we deduce the complete-lattice structure in quantum mechanics from postulates specifying the idealizations that are accepted in the theory. The idealized abstract concepts are introduced by means of a topological extension of the basic structure (obtained in Part I) in accord with the “approximation principle”; the relevant topologies are not arbitrarily chosen; they are fixed by the choice of the idealizations. There is a typical topological asymmetry in the mathematical scheme. Convexity or linear structures do not play any role in the mathematical methods of this approach. The essential concept in Part II is the idealization of “perfect measurement” suggested by our conceptual analysis in Part I. The Hilbert-space representation will be deduced in Part III. In our papers, we keep to the tenet: The mathematical scheme of a physical theory must be rigorously formulated. However, for physics, mathematics is only a nice and useful tool; it is not purpose.  相似文献   

13.
Classical and quantum Gibbs ensembles are constructed for equilibrium statistical mechanics in the framework of an extension to many-body theory of a relativistic mechanics proposed by Stueckelberg. In addition to the usual chemical potential in the grand canonical ensemble, there is a new potential corresponding to the mass degree of freedom of relativistic systems. It is shown that in the nonrelativistic limit the relativistic ensembles we have obtained reduce to the usual ones, and mass fluctuations for the free-particle gas approach the fluctuations in N. The ultrarelativistic limit of the canonical ensemble for the free-particle gas differs from the corresponding limit of the ensemble proposed by Jüttner and Pauli. Due to the mass degree of freedom, the quantum counting of states is different from that of the nonrelativistic theory. If the mass distribution is sufficiently sharp, the thermodynamical effects of this multiplicity will not be large. There may, however, be detectable effects such as a shift in the Fermi level and the critical temperature for Bose-Einstein condensation, and some change in specific heats.  相似文献   

14.
W. N. Polyzou 《Few-Body Systems》2014,55(8-10):589-597
I discuss different formulations of the relativistic few-body problem with an emphasis on how they are related. I first discuss the implications of some of the differences with non-relativistic quantum mechanics. Then I point out that the principle of special relativity in quantum mechanics implies that the quantum theory has a Poincaré symmetry, which is realized by a unitary representation of the Poincaré group. This representation can always be decomposed into direct integrals of irreducible representations and the different formulations differ only in how these irreducible representations are realized. I discuss how these representations appear in different formulations of relativistic quantum mechanics and discuss some applications in each of these frameworks.  相似文献   

15.
Both the set of quantum states and the set of classical states described by symplectic tomographic probability distributions (tomograms) are studied. It is shown that the sets have a common part but there exist tomograms of classical states which are not admissible in quantum mechanics and, vice versa, there exist tomograms of quantum states which are not admissible in classical mechanics. The role of different transformations of reference frames in the phase space of classical and quantum systems (scaling and rotation) determining the admissibility of tomograms as well as the role of quantum uncertainty relations are elucidated. The union of all admissible tomograms of both quantum and classical states is discussed in the context of interaction of quantum and classical systems. Negative probabilities in classical and quantum mechanics corresponding to tomograms of classical and quantum states are compared with properties of nonpositive and nonnegative density operators, respectively. The role of the semigroup of scaling transforms of the Planck's constant is discussed.  相似文献   

16.
It is shown that in the quantum theory of systems with a finite number of degrees of freedom which employs a set of algebraic states, a statistical element introduced by averaging the mean values of operators over the distribution of continuous quantities (a spectrum point of a canonical operator and time) is conserved for the limiting transition to the distribution. On that basis, quantum statistical dynamics, i.e., a theory in which dynamics (time evolution) includes a statistical element, is advanced. The theory is equivalent to orthodox quantum mechanics as regards the orthodox states, but is essentially different with respect to the coherence properties in a continuous spectrum. The measurement-process theory, including the statistical interpretation of quantum mechanics, and the irreversibility theory are constructed, and the law of increasing chaos, which is a strengthening of the law of entropy increase, is obtained. In our theory, mechanics and statistics are organically connected, whereby the fundamental nature of probabilities in quantum physics manifests itself.  相似文献   

17.
The general analysis of the equivalence of ensembles in quantum lattice systems, which was undertaken in paper I of this series, is continued.The properties of equilibrium states are considered in a variational sense. It is then shown that there exists a canonical as well as a microcanonical variational formulation of equilibrium both of which are equivalent to the grandcanonical formulation.Equilibrium states are constructed both in the canonical and in the microcanonical formalism by means of suitable limiting procedures.It is shown, in particular, that the invariant equilibrium states for a given energy and density are those for which the maximum of the mean entropy is reached. The mean entropy thus obtained coincides with the microcanonical entropy.  相似文献   

18.
An extension of the formalism of quantum mechanics to the case where the canonical variables are valued in a field ofp-adic numbers is considered. In particular the free particle and the harmonic oscillator are considered. In classicalp-adic mechanics we consider time as ap-adic variable and coordinates and momentum orp-adic or real. For the case ofp-adic coordinates and momentum quantum mechanics with complex amplitudes is constructed. It is shown that the Weyl representation is an adequate formulation in this case. For harmonic oscillator the evolution operator is constructed in an explicit form. For primesp of the form 4l+1 generalized vacuum states are constructed. The spectra of the evolution operator have been investigated. Thep-adic quantum mechanics is also formulated by means of probability measures over the space of generalized functions. This theory obeys an unusual property: the propagator of a massive particle has power decay at infinity, but no exponential one.  相似文献   

19.
The probability density distributions for the ground states of certain model systems in quantum mechanics and for their classical counterparts are considered. It is shown that classical distributions are remarkably improved by incorporating into them the Heisenberg uncertainty relation between position and momentum. Even the crude form of this incorporation makes the agreement between classical and quantum distributions unexpectedly good, except for the small area, where classical momenta are large. It is demonstrated that the slight improvement of this form makes the classical distribution very similar to the quantum one in the whole space. The obtained results are much better than those from the WKB method. The paper is devoted to ground states, but the method applies to excited states too.  相似文献   

20.
The review of new formulation of conventional quantum mechanics where the quantum states are identified with probability distributions is presented. The invertible map of density operators and wave functions onto the probability distributions describing the quantum states in quantum mechanics is constructed both for systems with continuous variables and systems with discrete variables by using the Born’s rule and recently suggested method of dequantizer–quantizer operators. Examples of discussed probability representations of qubits (spin-1/2, two-level atoms), harmonic oscillator and free particle are studied in detail. Schrödinger and von Neumann equations, as well as equations for the evolution of open systems, are written in the form of linear classical–like equations for the probability distributions determining the quantum system states. Relations to phase–space representation of quantum states (Wigner functions) with quantum tomography and classical mechanics are elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号