共查询到20条相似文献,搜索用时 15 毫秒
1.
Grimm F Ulm N Gröhn F Düring J Hirsch A 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(34):9478-9488
A modular construction kit with two orthogonal noncovalent binding sites for self-assembly of supramolecular architectures is presented. The heteroditopic building blocks contain a terpyridine (tpy) unit for coordination of metal ions and a Hamilton receptor for multiple H-bonding of cyanuric acid derivatives. The association constants of ligand binding of M(II) complexes (M=Ru, Zn, Fe, and Pt) with a dendritic end cap were determined to be in the range of 10(2) and 10(4) L mol(-1) in chloroform. The capabilities for binding of metal ions were investigated by (1)H NMR and UV/Vis spectroscopy. The Fe complexes are most appropriate for the generation of discrete and high-ordered architectures due to their strong tendency to form FeL(2) complexes. Superstructures are readily formed in a one-pot procedure at room temperature. No mutual interactions between the orthogonal binding motifs were observed, and this demonstrates the highly specific nature of each binding process. Decomplexation experiments were carried out to examine the reversibility of Fe-tpy coordination. Substitution of the terminal end cap with a homoditopic bis-cyanurate linkage leads to formation of an iron-containing supramolecular strand. Formation of coordination polymers was confirmed by viscosity measurements. The supramolecular polymer strands can be reversibly cleaved by addition of a terminating cyanuric acid building block, and this proves the dynamic nature of this noncovalent polymerization process. 相似文献
2.
3.
Luan XJ Cai XH Wang YY Li DS Wang CJ Liu P Hu HM Shi QZ Peng SM 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(24):6281-6289
The synthesis and structures of six compounds prepared in two different systems have been explored with the purpose of isolating coordination polymers with interlaced triple-stranded molecular braid architectures. The dinuclear paddle-wheel units of [Cu(2)(maa)(4)2 H(2)O] can be rationally tuned to form three classes of isomorphous compounds, namely [Cu(2)(maa)(4)(bpp)] (1) (bpp=1,3-bis(4-pyridyl)propane, Hmaa=2-methylacrylic acid), [Cu(3)(maa)(6)(bpp)(2)] (2), and[Cu(4)(maa)(8)(bpp)(4)(H(2)O)(2)]2 H(2)O (3), with a bridging bpp ligand, at controlled ligand-to-metal molar ratios, and lead to three coordination polymers having similar one-dimensional characteristics but different mono- and dinuclear nodes. Compound 1, with a bpp:[Cu(2)(maa)(4)2 H(2)O] stoichiometry of 1:1, contains a zigzag chain containing dinuclear nodes, whereas polymer 2, with a bpp:[Cu(2)(maa)(4)2 H(2)O] stoichiometry of 1.5:1, also adopts the topology of a zigzag chain but with both mono- and dinuclear nodes. Compound 3, with a bpp:[Cu(2)(maa)(4)2 H(2)O] stoichiometry of 2:1, contains a neutral, interlaced, triple-stranded molecular braid, which is interwoven by three single-stranded meso-helical chains that contain only a mononuclear node. With the three aromatic chelating terminal ligands 2,2':6',2'-terpyridine (tpy), 1,10-phenanthroline (phen), and di(2-pyridyl)amine (dpa) we have also prepared three neutral complexes containing the linear, rigid bridging ligand biphenyl-4,4'-dicarboxylate (bpdc), namely [Cd(bpdc)(tpy)]H(2)O (4), [Cu(bpdc)(phen)(2)]4.25 H(2)O (5), and [Cu(bpdc)(dpa)] (6). An infinite meso-helix is formed initially in 4, and then three of these chains assemble into a triple-stranded braid similar to that of 3. Complexes 5 and 6 have a mononuclear and a looped dinuclear structure, respectively. Compounds 3 and 4 are unusual examples of triple-stranded molecular braid coordination frameworks based on different types of co-ligands. 相似文献
4.
Dr. Jonathon E. Beves Jonathan J. Danon Prof. David A. Leigh Dr. Jean‐François Lemonnier Dr. Iñigo J. Vitorica‐Yrezabal 《Angewandte Chemie (International ed. in English)》2015,54(26):7555-7559
A molecular Solomon link was synthesized through the assembly of an interwoven molecular grid consisting of four bis(benzimidazolepyridyl)benzthiazolo[5,4‐d]thiazole ligands and four zinc(II), iron(II), or cobalt(II) cations, followed by ring‐closing olefin metathesis. NMR spectroscopy, mass spectrometry, and X‐ray crystallography confirmed the doubly interlocked topology, and subsequent demetalation afforded the wholly organic Solomon link. The synthesis, in which each metal ion defines the crossing point of two ligand strands, suggests that interwoven molecular grids should be useful scaffolds for the rational construction of other topologically complex structures. 相似文献
5.
6.
Kim HJ Lee E Kim MG Kim MC Lee M Sim E 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(13):3883-3888
Self-assembling coordination polymers based on Pd II and Cu II metal ions were prepared from complexation of a bent-shaped bispyridine ligand and a corresponding transition metal. These coordination polymers were observed to self-assemble into supramolecular structures that differ significantly depending on the coordination geometry of the metal center. The polymer based on Pd II self-assembles into a layer structure formed by bridging bispyridine ligands connected in a trans-position of the square-planar coordination geometry of metal center. In contrast, the polymer based on Cu II adopts a double-helical conformation with regular grooves, driven by interstranded, copper-chloride dimeric interaction. The double-stranded helical organization is further confirmed by structure optimization from density functional theory with aromatic framework, showing that the optimized double-helical structure is energetically favorable and consistent with the experimental results. These results demonstrate that weak metal-ligand bridging interactions can provide a useful strategy to construct stable double-stranded helical nanotubes. 相似文献
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Schmittel M Kalsani V Michel C Mal P Ammon H Jäckel F Rabe JP 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(21):6223-6237
The assembly of a rigid macrocycle with two exotopic phenanthroline binding sites in combination with linear bis- or trisphenanthrolines and copper(I) ions is used to generate nanoscale double and triple deckers, the latter showing a tubular structure. With supramolecular chemistry expanding to dynamic, large cavity, nanoscale structures, it becomes increasingly important to use robust assembly protocols as well as reliable characterization techniques. To fully elucidate and to describe the dynamic nature of metallonanoscaffolds with large voids, we applied a battery of both direct and indirect solution-state characterization methods. These methods along with the conventional direct methods provide a very useful tool for characterizing tubular nanoscaffold aggregates. 相似文献
17.
18.
To investigate the relationship between network connectivity and metal nuclearity, we designed and synthesized a series of three-dimensional (3D) entangled coordination frameworks based on different metal cores, namely [Zn(2)(bdc)(2)(L)(2)]2H(2)O (1), [Zn(bdc)(L)(0.5)] (2), [Zn(oba)(L)(0.5)] (3) and [Cd(3)(bdc)(3)(L)(2)(H(2)O)(2)] (4) by self-assembly of d(10) metal salts with the flexible long-chain ligand 1,4-bis(1,2,4-triazol-1-yl)butane (L), and with the rigid and nonrigid aromatic dicarboxylate ligands 1,4-benzenedicarboxylate (bdc) and 4,4'-oxybis(benzoate) (oba). Compound 1 exhibits a threefold interpenetrated diamondoid array typically based on a tetrahedral second building unit (SBU) at a single Zn center. Compound 2 adopts a threefold interpenetrated alpha-polonium-type network that is built from bimetallic cores as six-connected vertices. The structure of 3 also consists of dinuclear units; it comprises a novel (3,4)-connected threefold interpenetrated net with complex (4610)(46(2)10(3)) topology when single zinc centers act as four-connected nodes (or the alpha-Po topology if dinuclear units are considered as six-connected nodes). Compound 4, derived from a crosslinked fivefold interpenetrated diamond-like substructure, is an unusual example of a self-penetrating coordination framework displaying an unprecedented eight-connected 4(20)6(8) topology with trinuclear cadmium clusters as eight-connected nodes which, to our knowledge, not only defines a new topology for eight-connected coordination networks, but also represents the highest connected topology presently known for self-penetrating systems. Detailed structural comparison of these complexes indicates that the increase in metal nuclearity induces the progressive increase in the connectivities of the ultimate nets: that is, the metal nuclearity plays a significant role in tuning the connectivity of a specific network. The thermal and luminescent properties of these compounds are discussed. 相似文献
19.
Long DL Hill RJ Blake AJ Champness NR Hubberstey P Wilson C Schröder M 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(5):1384-1391
Reaction of ScX3 (X=NO3-, CF3SO3-, ClO4-) with 4,4'-bipyridine-N,N'-dioxide (L) affords topologically distinct six-connected three-dimensional coordination frameworks, {[Sc(L)3](NO3)3}(infinity) (1), {[Sc(L)3](CF3)SO3)3(CH3OH)2.7(H2O)3}(infinity) (2), {[Sc(L)3](ClO4)3}(infinity) (3) and {[Sc(L)4(H2O)2](ClO4)3}(infinity) (4). Compounds 1, 2 and 3 are networks based on octahedrally co-ordinated ScO6 centres bound through six oxygen atoms from six separate N-oxide ligands L. Compounds 1 and 3 are doubly interpenetrated and have alpha-polonium-type structures of 4(12)6(3) topology based upon three intersecting (4,4) nets. The structure of 2 is unusual and shows parallel, co-planar layers of (4,4) nets connected in a criss-crossed fashion to afford a new 4(8)6(6)8 topology. In 4 only four ligands L bind to each Sc(III) centre with two additional water molecules bridging metal nodes. Significantly, the bridges formed by L do not sit in a plane and if connections through L are considered alone the resultant structure is a diamondoid array typically based upon a tetrahedral connecting node at Sc. Five interpenetrating diamondoid networks are observed that are cross-bridged by water molecules to form a single three-dimensional array of 4(8)6(7) topology. Compound 4 can also be viewed as incorporating two intersecting (4,4) grids based upon two ligands L and two bridging waters. Thus, variation of anion, solvent and conditions critically affects the structures of products formed, and the series of polymers reported herein illustrates how tectons based upon (4,4) grids can be combined and distorted to form non-NaCl topologies and even cross-bridged, multiply interpenetrated diamondoid materials. Both compounds 2 and 4 represent unusual examples of self-penetrated coordination frameworks. 相似文献