首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
120 W的二极管泵浦Nd:YAG绿光激光器   总被引:7,自引:1,他引:7       下载免费PDF全文
对激光二极管泵浦的NdYAG声光调Q腔内倍频固体激光器的折叠腔型进行了研究,当泵浦功率达800 W时,在V型腔上实现了脉宽为80 ns、重复频率为10 kHz、发散角为6 mrad、绿光功率为112 W的输出;在Z型腔上实现了脉宽为95 ns、重复频率为10 kHz、发散角为4 mrad、绿光功率为120 W的输出.比较两种腔型的实验结果可看出,Z型腔由于插入的光学元件较多,腔长较长,输出激光的脉宽较宽,但输出激光的光束质量有明显的提高.  相似文献   

2.
基于分离的非对称大光腔结构,对激射波长为905nm的外延叠层三有源区大功率脉冲半导体激光器的外延结构进行优化设计。通过优化近场光场模式、自由载流子吸收损耗、相邻发光区之间距离以及掺杂浓度分布等关键参数,提高了器件的脉冲峰值功率,降低了内损耗和远场垂直发散角。研制的1mm腔长、100μm条宽的三有源区大功率半导体激光器,经由150ns脉宽和6.67kHz重复频率的脉冲测试,在34.5A脉冲电流强度驱动下实现了122W的脉冲峰值功率输出。器件的斜率效率为3.54 W/A,单个发光区实现了折合91.75%的内量子效率和2.05cm-1的内损耗,水平方向和垂直方向上的半峰全宽远场发散角分别为7.8°和27.6°。  相似文献   

3.
高峰值功率808nm垂直腔面发射激光器列阵   总被引:2,自引:2,他引:0       下载免费PDF全文
为了实现808 nm垂直腔面发射激光器(VCSEL)的高功率输出,对808 nm VCSEL的分布式布拉格反射镜(DBR)结构材料进行了优化设计,分析了AlxGa1-xAs材料中Al组分对于折射率与吸收的影响,并最终确定了材料。采用非闭合环结构制备了2×2 VCSEL列阵。通过波形分析法对VCSEL列阵的功率进行了测量:在脉冲宽度为20 ns、重复频率为100 Hz、注入电流为110 A的条件下,最大峰值功率为30 W;在脉冲宽度为60 ns、重复频率为100 Hz、注入电流为30 A的条件下,最大功率为9 W。对列阵的近场和远场进行了测量,激光器垂直发散角和水平发散角半高全宽分别为16.9°和17.6°。  相似文献   

4.
为了研究温升对915 nm宽条形应变量子阱半导体激光器输出特性的影响,搭建了基于半导体制冷片(TEC)的双向温控平台对其进行了测试。首先,改变激光器的外表面温度,测量其在不同注入电流时的光功率和波长,并利用CCD相机测量其慢轴发散角。然后,利用计算机仿真软件对激光器的工作状态进行稳态模拟,从而获得了其对应的热分布情况,通过将模拟得到的数据与实验测量的结果进行比较,获得了两者趋于一致的结论:当热功率从2.1 W升高至20.0 W时,慢轴发散角从2.6°增大至5.0°,同时波长发生红移,热透镜焦距减小;激光器波长随温度变化关系的系数约为0.4 nm/℃,器件热阻为1.5 K/W。因此,为了同时获得高的输出功率和稳定的输出波长,有必要将激光器外表面温度精确控制在某一数值,否则波长将会发生漂移;此外,在设计制作高功率半导体激光器时,通过适当增加条宽并采用散热良好的封装结构,可以减小对慢轴发散角的影响。  相似文献   

5.
对刀口法测量He-Ne激光束发散角的测量原理从理论上进行了证明,然后根据激光束相对功率为0.25和0.75的点位于高斯分布曲线极大值两侧,距离为ep=0.674 5σ=0.337 3W,对测量实验数据进行曲线拟合,求得其激光光束发散角。  相似文献   

6.
高功率激光的光学特性测试   总被引:4,自引:2,他引:2  
由于激光核聚变研究工作的需要,促进了高功率钕玻璃激光器系统的发展。为了评价高功率钕玻璃激光器系统的光束质量,我们对某些激光的光学特性进行了测试,其中包括激光束近场的能量空间分布,激光束远场的特性和发散角,激光束波前的畸变和相干性,激光光谱等。文中的测试结果是在激光器件输出单脉冲功率水平为10~(10)W和10~(11)W的情况下进行的。  相似文献   

7.
报道了一台激光二极管侧面泵浦Nd:YAG双向加压式电光调Q全固态纳秒激光器。采用结构简单的平-平腔设计,当重复频率为500 Hz时,得到了脉宽为5~20ns的可调输出,当脉冲宽度为6ns时,获得了平均输出功率为2.31W、中心波长为1064 nm的基模光,光束发散角为2.1 mrad,M2≤1.2,单脉冲能量稳定性高于1.16%(均方根)。采用两种不同的双通放大方式对调Q光进行放大,分别获得了功率为18.7 W和24.4 W的脉冲输出,单脉冲能量抖动低于2.16%和1.87%。  相似文献   

8.
采用反射型体布拉格光栅作为反馈元件构成红光外腔半导体激光器,对器件输出光特性进行了实验研究。重点研究了体布拉格光栅的位置对红光外腔半导体激光器远场特性的影响。实验结果表明,减小体布拉格光栅与激光器芯片之间的距离可提高激光器的锁模效果,窄化光谱,并且改善慢轴方向的光束发散角。使用衍射效率为20%的体布拉格光栅,可将半导体激光器的输出波长稳定锁定在634 nm附近,光谱线宽压缩至0.7 nm左右,输出功率可达1.06 W。  相似文献   

9.
激光窗口热效应对光束发散角的影响   总被引:6,自引:4,他引:2  
以DF激光器CaF_2输出窗口为例计算了三种输出功率(10~3W,10~4W,10~5W)情况下,窗口材料的温升、波阵面畸变及对光束发散角的影响。计算中窗口直径为40mm,厚度为10mm,光束直径为20mm。  相似文献   

10.
利用XeCl准分子激光在高压氢中产生受激喇曼散射获得峰值功率为0.2MW、衍射极限发射角的一阶(353nm)斯托克斯输出,井研究了泵浦激光发散角对受激喇曼散射转换效率的影响.  相似文献   

11.
研究了980 nm的垂直腔面发射激光器(VCSEL)欧姆接触技术.降低VCSEL的欧姆接触电阻,可有效地提高VCSEL的输出功率和延长其可靠性.P面采用高掺杂的P-GaAs/Ti/Pt/Au系统,N面采用N-GaAs/Ge/Au/Ni/Au系统,通过优化合金温度,得到了最佳优化合金温度为440 ℃,最低欧姆接触电阻值为0.04 Ω,同时对比了440 ℃和450 ℃器件的输出功率和转换效率之间的对比关系.测试结果表明,440 ℃器件的欧姆接触电阻0.04 Ω,峰值波长980.1 nm,光谱的半高宽0.8 nm,平行发散角θ 15.2°,垂直发散角θ 13.5°,输出功率1.4 W,转换效率最大值为14.4%,而450℃的器件欧姆接触电阻为0.049 Ω,输出功率为1.3 W,转换效率为12.8%.通过优化合金温度能有效地降低980 nm的VCSEL欧姆接触电阻.  相似文献   

12.
A 50.2W high pulse energy green laser system at 532 nm was demonstrated by extra-cavity second-harmonic generation (SHG). The fundamental laser was based on laser diode (LD) side-pumped MOPA Q-switched technology, producing 79W of average power at the repetition rate of 500 Hz, while the pulse width was 6 ns. Type-II angle phasematched KTiOPO4 (KTP) crystal was used as the nonlinear crystal. The 50.2W average power of 532 nm laser was obtained with the divergence angle less than 0.6 mrad and the corresponding peak power of 16.7MW. The optical frequency conversion efficiency from fundamental to green laser was up to 63.5%. The measured output power fluctuation was less than 0.38% in one hour operation.  相似文献   

13.
A compact straight cavity with two side-pumped Nd:YAG laser heads and a 90° quartz rotator in between is presented. By intracavity-frequency-doubling with a type II LBO crystal in this cavity, an output power of 180.2 W at 532 nm with a repetition rate of 10 kHz was achieved, corresponding to an electrical-to-optical efficiency of 10.9%. To best of our knowledge, this is the highest electrical-to-optical efficiency of the high power green lasers with above 100 W output power, ever reported. The pulsewidth was 70 ns and the peak power was 257.4 kW. The beam parameter product (beam waist multiplied by half beam divergence angle) was estimated to be 4.2 mm mrad and the power fluctuation over 2.5 hours was calculated to be better than ±1.2%.  相似文献   

14.
LBO腔内和频593 nm激光器   总被引:1,自引:0,他引:1  
报道了LD纵向泵浦NdYVO4晶体,经腔内和频得到593 nm激光输出的实验研究.采用一个线性平凹腔实现了1 064 nm和1 342 nm双波长连续波振荡,利用LBO腔内和频产生593 nm激光输出.在泵浦功率为1.4 W时得到593 nm的输出功率为70 mW.593 nm光束远场发散角小于1 mrad,光斑椭圆度为0.999,且具有低噪声输出特性.实验结果表明,该结构激光器是获得衍射极限全固体黄激光器的实用方法.  相似文献   

15.
为了提高980nm半导体激光器的输出功率并获得较小的远场发散角,在非对称波导结构的基础上设计了n型波导结构,即在n型波导中引入高折射率的内波导层。采用理论计算和SimLastip软件模拟对常规非对称波导结构和内波导结构进行了研究。利用分子束外延系统生长980nm内波导结构的外延材料,并制作了激光器。对于条宽为100μm、腔长为1000μm的器件,阈值电流为97mA,斜率效率为1.01W/A;当注入电流为500mA时,远场发散角为29°(垂直向)×8°(水平向),与模拟结果相符。理论计算和实验结果表明:较之于常规非对称波导结构,内波导结构可有效降低光场限制因子,提高输出功率,减小远场发散角。  相似文献   

16.
利用传播圆图解方法,分析了非对称平直腔固体激光器的热透镜效应对激光器的动力学稳定区的宽度、基模光斑尺寸和发散角的影响。此方法避免了传统ABCD矩阵法所需的繁琐计算,结果清晰明了,进而给出了测量晶体热焦距的一个简单方法。在该理论的指导下,设计了符合试验条件的谐振腔参量,并进行了实验研究,测量了激光二极管端面抽运的Nd:YVO4激光器的热焦距和光斑模式,当抽运功率23W时获得了稳定的10W准基模连续输出,实验结果与理论符合得很好。  相似文献   

17.
高效率激光二极管侧泵绿光激光器   总被引:1,自引:0,他引:1  
根据ABCD传输矩阵理论,对激光二极管侧泵的Nd∶YAG/KTP腔内倍频固体激光器Z型谐振腔进行了理论分析,采用Matlab对腔参数进行了理论计算。通过理论计算,选择适当腔参数进行了实验研究,当重复频率为9 kHz,输入电功率302.5 W时,获得了17.27 W绿光输出,输出不稳定性小于0.9%,电光转化效率为5.7%,光束质量因子M2x=3.351, M2y=3.759,发散角为0.68 mrad。  相似文献   

18.
808 nm激光二极管阵列波长光束组合20 W输出   总被引:2,自引:1,他引:1       下载免费PDF全文
 基于多波长光束组合技术,利用光栅的衍射和外腔的反馈,将激光二极管阵列(LDA)发光单元锁定在不同的波长上,以近似平行光束沿光栅的-1级衍射方向组合输出,改善LDA输出光束质量。实验采用发光单元宽度为100 μm、周期为500 μm,由19个单元构成的1 cm普通商用LDA,在连续运行最大注入电流60.6 A时,自由运转输出功率49.8 W时,获得功率为20.1 W的组合光束稳定输出,其光谱宽度为15 nm,对应的远场发散角由约70 mrad变为1.66 mrad,改善后光束质量因子约为32,其值与单个发光单元的光束质量相当。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号