首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The properties of vibrational localized (breathers) and traveling (anharmonic phonons) waves are discussed in an infinite, one-dimensional, monoatomic crystal for the Fermi-Pasta-Ulam and Frenkel-Kontorova models. The shooting and finite difference schemes have been implemented to reckon the displacement fields of breathers and anharmonic phonons, respectively. These tools provide localized and traveling waves proving to be indefinitely stable in simulations carried out by solving the equations of motion. The emphasis is laid on the role of the cubic and quartic terms of the anharmonic potential which turn out to oppose and to shore up the restoring force, respectively. The case of vibrational modes arising in an anharmonic crystal subject to a soft phonon induced instability is also addressed. Received 7 November 2001 and Received in final form 5 February 2002 Published online 6 June 2002  相似文献   

2.
The nonlinear localized vibrational modes of a one-dimensional atomic chain with two periodically alternating masses and force constants are analytically investigated using a discrete multiple-scale expansion method. This model simulates a row of atoms in the <1 1 1>-direction of sphalerite, or zinc blende, crystals. Owing to the structural asymmetry, the vibrational amplitude is governed by a perturbed nonlinear Schr?dinger equation instead of the standard one found in one-dimensional lattices with two alternating masses but uniform force constant. Although the stationary localized modes with carrier wavevector at the Brillouin-zone boundary are similar to those of ionic lattices, the moving localized modes with wavevectors within the zone are different owing to the perturbation. The calculation shows that the height of the moving localized modes in this lattice dampens with time. Received 14 May 2001 and Received in final form 12 July 2001  相似文献   

3.
We investigate the influence of energetic disorder, viscous damping and an external field on the electron transfer (ET) in DNA. The double helix structure of the λ-form of DNA is modeled by a steric oscillator network. In the context of the base-pair picture two different kinds of modes representing twist motions of the base pairs and H-bond distortions are coupled to the electron amplitude. Through the nonlinear interaction between the electronic and the vibrational degrees of freedom localized stationary states in the form of standing electron-vibron breathers are produced which we derive with a stationary map method. We show that in the presence of additional energetic disorder the degree of localization of such breathers is enhanced. It is demonstrated how an applied electric field initiates the long-range coherent motion of breathers along the bases of a DNA strand. These moving electron-vibron breathers, absorbing energy from the applied field, sustain energetic losses due to the viscous friction caused by the aqueous solvent as well as the impact of a moderate amount of energetic disorder. Moreover, it is illustrated that with the choice of the amplitude and frequency of the external field, the breather can be steered to a desired lattice position achieving control of the ET. Received 5 July 2002 Published online 29 November 2002  相似文献   

4.
We investigate the propagation and interaction of solitons associated with circularly polarized vibrations in gyrotropic media. The chirality of the structure yields different dispersion laws and hence different phase and group velocities for the left- and right-handed modes. The helical arrangement of the monomers is modelled through first- and third-neighbour interactions. The dynamics of the excitations is governed by a system of coupled discrete nonlinear Schr?dinger equations which is studied both analytically and numerically. Depending on the initial conditions and the interaction constants, different evolutionary patterns are obtained corresponding to unbound or bound one- and two-soliton solutions. The results can be applied to the process of energy transfer in helical polymers. Received 1st October 2001 / Received in final form 30 April 2002 Published online 2 October 2002 RID="a" ID="a"e-mail: krad@issp.bas.bg  相似文献   

5.
We consider changes in the electron-phonon coupling in high-T c cuprates caused by site-selective oxygen isotope substitution. Contrary to the total substitution, the site-selective replacement influences the coupling constant for each phonon mode due to the induced changes in the phonon eigenvectors. The relative changes for some modes can be larger than 100%. The measured properties sensitive to these changes are discussed. Received 9 August 2001 and Received in final form 11 January 2002  相似文献   

6.
Based on a half-filled two-dimensional tight-binding model with nearest-neighbour and next nearest-neighbour hopping the effect of imperfect Fermi surface nesting on the Peierls instability is studied at zero temperature. Two dimerization patterns corresponding to a phonon vector (π,π) are considered. It is found that the Peierls instability will be suppressed with an increase of next nearest-neighbour hopping which characterizes the nesting deviation. First and second order transitions to a homogeneous state are possible. The competition between the two dimerized states is discussed. Received 22 December 2000  相似文献   

7.
In this paper we study Peierls instabilities for a half-filled two-dimensional tight-binding model with nearest-neighbour hopping t and next nearest-neighbour hopping t' at zero and finite temperatures. Two dimerization patterns corresponding to the same phonon vector (π,π) are considered to be realizations of Peierls states. The effect of imperfect nesting introduced by t' on the Peierls instability, the properties of the dimerized ground state, as well as the competition between two dimerized states for each t' and temperature T, are investigated. It is found: (i). The Peierls instability will be frustrated by t' for each of the dimerized states. The Peierls transition itself, as well as its suppression by t', may be of second- or first-order. (ii). When the two dimerized states are considered jointly, one of them will dominate the other depending on parameters t' and T. Two successive Peierls transitions, that is, the system passing from the uniform state to one dimerized state and then to the other may take place with decrease of temperature. Implications of our results to real materials are discussed. Received 31 July 2001  相似文献   

8.
Within the framework of the dielectric continuum model, interface optical(IO) and surface optical(SO) phonon modes and the Fr?hlich electron-IO (SO) phonon interaction Hamiltonian in a multi-shell spherical system were derived and studied. Numerical calculation on CdS/HgS/H2O and CdS/HgS/CdS/H2O spherical systems have been performed. Results reveal that there are two IO modes and one SO mode for the CdS/HgS/H2O system, one SO mode and four IO modes whose frequencies approach the IO phonon frequencies of the single CdS/HgS heterostructure with the increasing of the quantum number l for CdS/HgS/CdS/H2O. It also showed that smaller l and SO phonon compared with IO phonon, have more significant contribution to the electron-IO (SO) phonon interaction. Received 16 October 2001 and Received in final form 23 January 2002 Published online 25 June 2002  相似文献   

9.
We study the dynamics of the discrete nonlinear Schr?dinger lattice initialized such that a very long transitory period of time in which standard Boltzmann statistics is insufficient is reached. Our study of the nonlinear system locked in this non-Gibbsian state focuses on the dynamics of discrete breathers (also called intrinsic localized modes). It is found that part of the energy spontaneously condenses into several discrete breathers. Although these discrete breathers are extremely long lived, their total number is found to decrease as the evolution progresses. Even though the total number of discrete breathers decreases we report the surprising observation that the energy content in the discrete breather population increases. We interpret these observations in the perspective of discrete breather creation and annihilation and find that the death of a discrete breather cause effective energy transfer to a spatially nearby discrete breather. It is found that the concepts of a multi-frequency discrete breather and of internal modes is crucial for this process. Finally, we find that the existence of a discrete breather tends to soften the lattice in its immediate neighborhood, resulting in high amplitude thermal fluctuation close to an existing discrete breather. This in turn nucleates discrete breather creation close to a already existing discrete breather. Received 21 January 1999 and Received in final form 20 September 1999  相似文献   

10.
Excitations of the polaron types are investigated in the spin-1/2 quantum chain with XY exchange and Dzyaloshinsky-Moriya interaction, both coupled to acoustic vibrations of the substrate lattice. The study is carried out via Jordan-Wigner transformation with the help of which the spin chain is mapped onto a chain of spinless fermions. From the resulting effective fermion-lattice Hamiltonian, the discrete equations of motion are derived. These equations are solved in the continuum limit for self-trapped states near the bottom of the fermion spectrum interacting with long-wavelength acoustic lattice modes. The associate polaron solution, which has a pulse shape, is shown to propagate bound to the induced lattice kink distortion by translation along the chain at a constant velocity v. The pair can also experience an additional acceleration ϑ0 when the free fermion charge is excited above its groundstate. The polaron binding energy is strongly reduced, depending quadratically on the ratio D/J of the Dzyaloshinsky-Moriya interaction strength D to the isotropic XY exchange interaction J. It is also found that polaron parameters depend only on the XY spin-lattice coupling but not on the Dzyaloshinsky-Moriya contribution.  相似文献   

11.
We investigate the collisions of moving breathers, with the same frequency, in three different Klein-Gordon chains of oscillators. The on-site potentials are: the asymmetric and soft Morse potential, the symmetric and soft sine-Gordon potential and the symmetric and hard φ4 potential. The simulation of a collision begins generating two identical moving breathers traveling with opposite velocities, they are obtained after perturbing two identical stationary breathers which centers are separated by a fixed number of particles. If this number is odd we obtain an on-site collision, but if this number is even we obtain an inter-site collision. Apart from this distinction, we have considered symmetric collisions, if the colliding moving breathers are vibrating in phase, and anti-symmetric collisions, if the colliding moving breathers are vibrating in anti-phase. The simulations show that the collision properties of the three chains are different. The main observed phenomena are: breather generation with trapping, with the appearance of two new moving breathers with opposite velocities, and a stationary breather trapped at the collision region; breather generation without trapping, with the appearance of new moving breathers with opposite velocities; breather trapping at the collision region, without the appearance of new moving breathers; and breather reflection. For each Klein-Gordon chain, the collision outcomes depend on the lattice parameters, the frequency of the perturbed stationary breathers, the internal structure of the moving breathers and the number of particles that initially separates the stationary breathers when they are perturbed.  相似文献   

12.
In the presence of a magnetic field the Hamiltonian of the single or double polaron bound to a helium-type donor impurity in semiconductor quantum wells (QWs) are given in the case of positively charged donor center and neutral donor center. The couplings of an electron and the impurity with various phonon modes are considered. The binding energy of the single and double bound polaron in AlxlGa 1-xlAs/GaAs/AlxrGa 1-xrAs QWs are calculated. The results show that for a thin well the cumulative effects of the electron-phonon coupling and the impurity-phonon coupling can contribute appreciably to the binding energy in the case of ionized donor. In the case of neutral donor the contribution of polaronic effects are not very important, however the magnetic field significantly modifies the binding energy of the double donor. The comparison between the binding energies in the case of the impurity placed at the quantum well center and at the quantum well edge is also given. Received 16 February 1999  相似文献   

13.
The Feynman-Haken variational path integral theory is, for the first time, generalized to calculate the ground-state energy of an electron coupled simultaneously to a Coulomb potential and to a longitudinal-optical (LO) phonon field in parabolic quantum wires. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter and monotonically stronger as the effective wire radius decreases. We apply our calculations to several semiconductor quantum wires and find that the polaronic correction can be considerably large. Received 16 November 1998  相似文献   

14.
A two-site double exchange model with a single polaron is studied using a perturbation expansion based on the modified Lang-Firsov transformation. The antiferromagnetic to ferromagnetic transition and the crossover from small to large polaron are investigated for different values of the antiferromagnetic interaction (J) between the core spins and the hopping (t) of the itinerant electron. Effect of the external magnetic field on the small to large polaron crossover and on the polaronic kinetic energy are studied. When the magnetic transition and the small to large polaron crossover coincide for some suitable range of J/t, the magnetic field has very pronounced effect on the dynamics of polarons. Received 1 June 2000  相似文献   

15.
Our recent experiments show that arrays of underdamped Josephson junctions radiate coherently only above a threshold number of junctions switched onto the radiating state. For each junction, the radiating state is a resonant step in the current-voltage characteristics due to the interaction between the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dimensional array of Josephson junctions coupled to a resonator can produce many features of the coherent be havior above threshold, including coherent radiation of power and the shape of the array current-voltage characteristic. The model also makes quantitative predictions about the degree of coherence of the junctions in the array. However, in this model there is no threshold; the experimental below-threshold region behavior could not be reproduced.Received: 11 April 2003, Published online: 23 July 2003PACS: 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects - 85.25.-j Superconducting devices  相似文献   

16.
The general properties of one-dimensional large Fr?hlich polarons in motion are investigated with the previous extended coherent states where two-phonon correlations are considered. As a result, the polaron energy, velocity, effective mass, and average number of virtual phonons as a function the polaron total momentum are evaluated in a wide range of the coupling constant. In addition, rich information about virtual phonons emitted by the electron in motion is obtained. More importantly, some intrinsic features of 1D moving polarons are presented for the first time, which may also be suited to moving polarons in more than one dimensions. Received: 23 October 1997 / Revised and Accepted: 27 January 1998  相似文献   

17.
The ground- and first-excited state energies of a magnetopolaron in a two dimensional parabolic quantum dot are studied within a variational calculation for all coupling strength. The Lee-Low-Pines-Huybrecht variational technique that is developed previously for all coupling strength has been extented for polarons in a magnetic field. The dependence of the polaronic correction on the magnetic field and the confinement length is investigated. The polarization potential and the renormalized cyclotron masses as a function of electron-phonon coupling strength and the strength of both confinement potential and magnetic field are also studied within the same approach. Received 16 December 2002 / Received in final form 14 April 2003 Published online 4 June 2003 RID="a" ID="a"e-mail: kandemir@science.ankara.edu.tr  相似文献   

18.
The phase diagram of half-doped manganite systems of formula A 0.5 A 0.5MnO3 is investigated within a single-orbital model incorporating magnetic double-exchange and superexchange, together with intersite Coulomb and electron-lattice interactions. Strong Jahn-Teller and breathing mode deformations compete together and result in shear lattice deformations. The latter stabilize the charge-ordered CE-type phase, which undergo first-order transitions with temperature or magnetic field to either Ferromagnetic metallic or Paramagnetic insulating phases. An essential feature is the self-consistent screening of Coulomb and electron-phonon interactions in the ferromagnetic phase. Received 28 November 2000  相似文献   

19.
Moving nonlinear localized vibrational modes (i.e. discrete breathers) for the one-dimensional homogenous lattice with quartic anharmonicity are obtained analytically by means of a semidiscrete approximation plus an integration. In addition to the pulse-envelope type of moving modes which have been found previously both analytically and numerically, we find that a kink-envelope type of moving mode which has not been reported before can also exist for such a lattice system. The two types of modes in both right- and left-moving form can occur with different carrier wavevectors and frequencies in separate parts of the plane. Numerical simulations are performed and their results are in good agreement with the analytical predictions. Received 13 October 1999 and Received in final form 15 May 2000  相似文献   

20.
The translationally invariant diagrammatic quantum perturbation theory (TPT) is applied to the polaron problem on the 1D lattice, modeled through the Holstein Hamiltonian with the phonon frequency ω0, the electron hopping t and the electron-phonon coupling constant g. The self-energy diagrams of the fourth-order in g are calculated exactly for an intermittently added electron, in addition to the previously known second-order term. The corresponding quadratic and quartic corrections to the polaron ground state energy become comparable at t/ω0>1 for g/ω0∼(t/ω0) 1/4 when the electron self-trapping and translation become adiabatic. The corresponding non adiabatic/adiabatic crossover occurs while the polaron width is large, i.e. the lattice coarsening negligible. This result is extended to the range (t/ω0)1/2>g/ω0>(t/ω0)1/4>1 by considering the scaling properties of the high-order self-energy diagrams. It is shown that the polaron ground state energy, its width and the effective mass agree with the results found traditionally from the broken symmetry side, kinematic corrections included. The Landau self-trapping of the electron in the classic self-consistent, localized displacement potential, the restoration of the translational symmetry by the classic translational Goldstone mode and the quantization of the polaronic translational coordinate are thus all encompassed by a quantum theory which is translationally invariant from the outset. This represents the first example, open to various generalizations, of the capability of TPT to hold through the adiabatic symmetry breaking crossover. Plausible arguments are also given that TPT can describe the g/ω0>(t/ω0)1/2 regime of the small polaron with adiabatic or non-adiabatic translation, i.e., that TPT can cover the whole g/ω0, t/ω0 parameter space of the Holstein Hamiltonian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号