首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this work, we have investigated the optical properties of some multiple quantum wells under the influence of an external magnetic field and (for the first time) number of wells. We have retained the total length of the structure constant which is technologically important. Then we have detected a blue shift in the absorption peak positions due to the application of the magnetic field and a red shift due to the increasing of the number of wells. The red shift is only seen in the multiple quantum wells with odd number of wells and the absorption peaks of the multiple quantum well with even number of wells are not changed.  相似文献   

2.
Resonant quantum tunneling of the Néel vector between nonequivalent magnetic wells is investigated theoretically for a nanometer-scale single-domain antiferromagnet with biaxial crystal symmetry in the presence of an external magnetic field applied along the easy anisotropy axis, based on the two-sublattice model. Both the Wentzel-Kramers-Brillouin exponent and the preexponential factors are evaluated in the instanton contribution to the tunneling rate for finite and zero magnetic fields by applying the instanton technique in the spin-coherent-state path-integral representation, respectively. The quantum interference or spin-parity effects induced by the topological phase term in the Euclidean action are discussed in the rate of quantum tunneling of the Néel vector. In the absence of an external applied magnetic field, the effect of destructive phase interference or topological quenching on resonant quantum tunneling of the Néel vector is evident for the half-integer excess spin antiferromagnetic nanoparticle. In the weak field limit, the tunneling rates are found to oscillate with the external applied magnetic field for both integer and half-integer excess spins. We discuss the experimental condition on the applied magnetic field which may allow one to observe the topological quenching effect for nanometer-scale single-domain antiferromagnets with half-integer excess spins. Tunneling behavior in resonant quantum tunneling of the magnetization vector between nonequivalent magnetic wells is also studied for a nanometer-scale single-domain ferromagnet by applying the similar technique, but in the large noncompensation limit. Received 4 June 1999  相似文献   

3.
Because of the Zeeman splitting effect in diluted semiconductor (Zn,Cd,Mn)Se, the absorption spectrum of ZnSe/(Zn,Cd,Mn)Se quantum wells can be adjusted by magnetic field effectively. Within the effective-mass approximation, the conduction electronic structure and the absorption spectrum of ZnSe/(Zn,Cd,Mn)Se quantum wells subjected to in-plane magnetic fields are investigated. Our theoretical results show that it is possible to use the ZnSe/(Zn,Cd,Mn)Se quantum well as magnetically tunable terahertz photodetectors.  相似文献   

4.
The effect of a random field caused by impurities, interface roughness and so on, on the optical properties and superfluidity of a quasi-two-dimensional system of excitons is studied. The influence of a random field on the density of the superfluid component of excitonic systems at low temperatures is investigated. For quasi-two-dimensional excitonic systems in a random field the Kosterlitz–Thouless temperature in the superfluid state is calculated. The superfluidity and Bose–Einstein condensation of indirect excitons in coupled quantum dots are studied. Magnetoexciton light absorption in the disordered quantum wells is considered. The two-particle problem of the magnetoexciton motion in the external field depending on the external magnetic field is reduced to the one-particle motion with effective magnetic mass in some effective field. The energy and optical absorption of the magnetoexciton in a single and coupled quantum dots are studied using the effective-magnetic-mass Hamiltonian. In the coherent potential approximation the coefficient of magnetoexciton optical absorption in single and coupled quantum wells is calculated. In the strong magnetic fields the exciton peak decreases with magnetic field increasing in accordance with the experimental data. The localization of direct and indirect magnetoexcitons is investigated. Received: 14 April 2000 / Accepted: 17 April 2000 / Published online: 6 September 2000  相似文献   

5.
The theoretical study of the combined effects of electric and magnetic fields and hydrostatic pressure on the nonlinear optical absorption and rectification is presented for electrons confined within an asymmetrical GaAs?Ga1-x Alx As double quantum well. The effective mass, parabolic band, and envelope function approaches are used as tools for the investigation. The electric field is taken to be oriented along the growth direction of the heterostructure and the magnetic field is applied parallel to the interfaces of the quantum wells. The pressure-induced mixing between the two lowest conduction bands is considered both in the low and high pressure regimes. According to the results obtained it can be concluded that the nonlinear optical absorption and rectification coefficients depend in a non-trivial way on some internal and external parameters such as the size of the quantum wells, the direction of applied electric field, the magnitude of hydrostatic pressure, the stoichiometry of the wells and barriers, and the intensity of the applied magnetic field.  相似文献   

6.
In this study, both the intersubband optical absorption coefficients and the refractive index changes as dependent on the magnetic field are calculated in square and graded quantum wells. Our results show that the position and the magnitude of the linear and total absorption coefficients and refractive index changes depend on the magnetic field strength and the shape of potential. The incident optical intensity has a great effect on the total absorption and refractive index changes.  相似文献   

7.
The problem of exciton light absorption in quasi-two-dimensional inhomogeneous systems in a strong transverse magnetic field H is analyzed. We assume that a random Gaussian field (“white noise”) acting separately on an electron and a hole is due to (1) fluctuations in the quantum well thickness or (2) fluctuations in the concentrations of the solid solution components. The problem of a magnetoexciton in a random Gaussian white noise field has been reduced to the problem of the motion in an H-dependent effective field of a single particle with the effective magnetic mass of the exciton, which is a function of the magnetic field and parameters of the quantum wells, in a field characterized by “colored noise,” whose correlation function is different from that of the white noise field. In this approximation, the problem of a magnetoexciton in isolated and coupled quantum dots is considered. In the coherent-potential approximation, the exciton absorption in random fields of the first and second type in single and coupled quantum wells has been calculated. The absorption decreases as H increases in the range of strong magnetic fields, which is in agreement with experimental data. Zh. éksp. Teor. Fiz. 114, 1451–1465 (October 1998)  相似文献   

8.
Spontaneous emission of terahertz radiation from structures with GaAs/AlGaAs quantum wells in a longitudinal magnetic field has been studied. It is shown that some bands in the emission spectrum can be related to radiative electron transitions between resonant and localized impurity states, as well as to the transitions with participation of subband states. The temperature dependence of the equilibrium intraband absorption of terahertz radiation and its modulation in a longitudinal electric field in GaAs/AlGaAs quantum wells has been investigated.  相似文献   

9.
The spectra of reflection and absorption of monochromatic light by semiconductor quantum wells whose width is comparable to the wavelength of exciting radiation are calculated. The case of resonance with two closely spaced excited levels is considered. These levels can arise as a result of splitting of the electron-hole pair energy due to the magnetopolaron effect when the quantum well is placed in a strong magnetic field directed perpendicular to the plane of the quantum well. It is demonstrated that, in wide quantum wells, unlike in narrow quantum wells, the reflectance and absorptance of light depend on the quantum-well width. The theory is applicable at any reciprocal ratio of the radiative lifetime to the nonradiative lifetime of electronic excitations.  相似文献   

10.
The indirect Mott exciton (spatially-separated electron and hole) in coupled quantum wells in crossed electric and magnetic fields is discussed. The exciton spectrum is calculated for the case where the distance between the quantum wells of the electron and hole is larger than the exciton Bohr radius. The magnetoexciton creation probability is calculated and its dependence on the electric field is found. The absorption of electromagnetic radiation between the indirect magnetoexciton levels in coupled quantum wells is discussed. Fiz. Tverd. Tela (St. Petersburg) 39, 2220–2223 (December 1997)  相似文献   

11.
The spectrum of neutral intersubband excitations in single and double quantum wells has been studied by the inelastic light scattering method. It is shown that excitation energies in an external magnetic field have an anisotropic component proportional to the dipole moment of excitations along the growth axis of the quantum wells. Consequently, the measurement of excitation energy in a magnetic field makes it possible to experimentally estimate the quantitative measure of asymmetry of the quantum wells (dipole moment of the intersubband transition). In addition, a parallel magnetic field makes it possible to considerably extend the range of momenta studied since it shifts the dispersion curves in the momentum space by the value of the anisotropic component. A new method is proposed for determining the symmetry of double quantum wells. In asymmetric wells, intersubband excitations appear between the layers and have a large dipole moment along the growth axis. In symmetric wells, the magnetic field itself induces the dipole moment of intersubband excitations so that the excitation spectrum does not change upon magnetic field inversion. Analysis of energy anisotropy in intersubband excitations in double quantum wells makes it possible to determine the symmetry of double wells to a high degree of accuracy.  相似文献   

12.
We have studied CR lineshape of terahertz-light-induced current in InAs quantum wells in tilted quantizing magnetic fields. We have observed dramatic modification of the lineshape with increasing of in-plane component of magnetic field as well as with increasing of transverse built-in electric field in the well. Scenario of the modification shows that the energy spectrum asymmetry is determined by so-called toroidal moment of the system and is a function of Landau quantum number. Macroscopic self-organization of electrons under the conditions of quantum Hall effect has also been directly demonstrated in both linear and saturation regimes of the light absorption.  相似文献   

13.
In this work the effects of intense laser on the electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga1−xAlxAs quantum wells are studied under, applied electric and magnetic field. The electric field is applied along the growth direction of the quantum well whereas the magnetic field has been considered to be in-plane. The calculations were performed within the density matrix formalism with the use of the effective mass and parabolic band approximations. The intense laser effects are included through the Floquet method, by modifying the confining potential associated to the heterostructure. Results are presented for the nonlinear optical absorption, the nonlinear optical rectification and the resonant peak of these two optical processes. Several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation have been considered. The outcome of the calculation suggests that the nonlinear optical absorption and optical rectification are non-monotonic functions of the dimensions of the heterostructure and of the external perturbations considered in this work.  相似文献   

14.
Electron spin resonance in GaAs/AlGaAs quantum wells in the vicinity of odd filling factors ν = 3, 5, and 7 is investigated. The spin relaxation time of two-dimensional electrons is determined from the width of the microwave resonance absorption line. Dependences of the spin relaxation time on the filling factor, temperature, and orientation of the magnetic field are investigated. The spin relaxation time decreases noticeably upon deviation from odd filling factors, and its maximum value depends on the angle between the magnetic field and the plane of the two-dimensional electron gas.  相似文献   

15.
Tunneling characteristics of a two-dimensional lateral tunnel junction are reported. A pseudogap on the order of Coulomb energy is detected in the tunneling density of states (TDOS) when two identical two-dimensional electron systems are laterally separated by a thin energy barrier. The Coulombic pseudogap remains robust well into the quantum Hall regime until it is overshadowed by the cyclotron gap in the TDOS. The pseudogap is modified by the in-plane magnetic field, demonstrating a nontrivial effect of the in-plane magnetic field on the electron-electron interaction.  相似文献   

16.
The exciton effects on the interband absorption spectra in near-surface square and semiparabolic quantum wells under intense laser field are studied taking into account the correct dressing effect for the confinement potential and electrostatic self-energy due to the repulsive interaction between carriers and their image charges. We found that for near-surface quantum wells with different shapes the laser field induces significant effects on their electronic and optical properties. The numerical results for the InGaAs/GaAs system show that the red-shift of the absorption peak induced by the increasing cap layer can be effectively compensated using the blue-shift caused by the enhanced laser parameter. In square quantum well without laser field our theoretical values for the absorption peak position are in good agreement with the available experimental data. As a key result, we conclude that the optical properties in near-surface quantum wells can be tuned by tailoring the heterostructure parameters: well shape, capped layer thickness and/or dielectric mismatch as well as the external field radiation strength.  相似文献   

17.
A theoretical analysis of the optical absorption including both the linear and third-order non-linearity arising from intersubband transitions in two-level quantum wells, which are embedded in a planar microcavity, has been performed. Starting from the Maxwell–Lorentz equations, the expressions of the field in each layer are explicitly given, and the field in the quantum wells is determined via an integral equation, in which the third-order non-linearity is included. Then, by matching the boundary conditions, the field in the quantum-well microcavity structure is rigorously determined, and the absorption coefficient is thus obtained. Detailed numerical calculations show that the optical intersubband absorption can be significantly modified due to the coupling between the quantum wells and the microcavity. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

18.
The theoretical principles of reflection and absorption of light by low-dimensional semiconductor objects (quantum wells, quantum wires, quantum dots) under monochromatic and pulsed excitations with an arbitrary pulse shape are developed. A semiconductor object can be placed in a strong constant magnetic field. The normal incidence of light on a quantum well whose width can be comparable to the light wavelength and for which the number of levels of electronic excitations can be arbitrary is considered as an example. An integral equation similar to the Dyson equation is derived for the Fourier components of the electric fields. The solutions to this equation are given for a number of special cases.  相似文献   

19.
We have measured the photoluminescence spectra and photoluminescence excitation spectra of magnetic excitons in InGaAs/GaAs near-surface quantum wells in a magnetic field. We have quantitatively investigated the effect of dielectric enhancement of excitons in quantum wells brought about by decreasing the thickness of the barrier layer, both in a magnetic field and without. Fiz. Tverd. Tela (St. Petersburg) 40, 806–808 (May 1998)  相似文献   

20.
We theoretically study the spatial behaviors of spin precessions modulated by an effective magnetic field in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction between the spin and the effective magnetic field, we find some laws of spin precession in the system, by which we explain some previous phenomena of spin precession, and predict a controllable electron spin polarization wave in [001]-grown quantum wells. The shape of the wave, like water wave, mostly are ellipse-like or circle-like, and the wavelength is anisotropic in the quantum wells with two unequal coupling strengths of the Rashba and Dresselhaus interactions, and is isotropic in the quantum wells with only one spin orbit interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号