首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The Rayleigh wave, that propagates at the free surface of semi-infinite anisotropic medium, is composed of three inhomogeneous partial waves, each propagating along the surface with a different attenuation along the depth. Since this wave does not exhibit an attenuation on the surface, let us call it the homogeneous Rayleigh wave. The associated slowness corresponds to the real solution of the Rayleigh dispersion equation. Besides this classical solution, an infinite number of complex solutions of the Rayleigh dispersion equation exits. For such particular Rayleigh waves, the slowness vector, i.e. the identical component on the surface of the slowness of each partial waves, is taken to be complex. Thus, these Rayleigh waves are attenuated on the surface and as shown here, their attenuation is normal to the ray direction (or the energy velocity direction). Similarly to the infinite inhomogeneous plane waves which can be associated with complex rays, we call these waves, inhomogeneous Rayleigh waves. We use the inhomogeneous skimming waves, which are inhomogeneous plane waves, and the inhomogeneous Rayleigh waves to explain differently the usual diffraction phenomena on the free surface which cannot be explained by the real ray theory. For example, the arrival time of the wave packet observed beyond the cusp is in perfect accordance with the arrival time of some specific inhomogeneous Rayleigh waves. We show that these results are in agreement with the computation of the Green function. They apply to the theory of surface waves in linear elastodynamics with intrinsic anisotropy as well as to the theory of surface waves in linearised (incremental) elastodynamics with strain-induced anisotropy (also known as small-amplitude waves superimposed on the large static homogeneous deformation of a non-linear solid).  相似文献   

2.
非线性弹性介质中冲击波斜反射的研究   总被引:1,自引:1,他引:1  
本文讨论了各向同性非线性超弹性介质在平面小应变下的冲击波斜反射问题。给出了本构关系、简单波解和冲击波解,并作为例子求解了入射冲击波在自由面的斜反射问题。  相似文献   

3.
波作用量守恒原理在波流相互作用中的应用   总被引:3,自引:2,他引:3  
王涛  李家春 《力学学报》1996,28(3):281-290
波和流相遇后,经过相互作用产生稳定的波流场.基于波作用量守恒原理,本文提出了解决Stokes波与指数剖面流同向或反向相遇过程中波传播特性改变问题的五阶理论,给出了这种相互作用前后波参数间的关系和相应流场的变化,并与线性结果进行了比较.结果表明,当波流同向时,波变平缓;当波流反向时,波明显变陡.随着波流强度的增加,非线性的影响变得越来越明显,尤其当波同反向流相遇时,波幅显著增大,这时必须用非线性理论来考虑波流相互作用的影响  相似文献   

4.
The paper deals with the plane problem of steady-state time harmonic vibrations of an infinite elastic plate resting on a water-saturated porous solid. The displacements of the plate are described by means of the linear theory of small elastic oscillations. The motion of the two-phase medium is studied within the framework of Biot's linear theory of consolidation. The main interest is focused on the investigation of properties of the Rayleigh-type waves propagating alongside of the contact surface between the plate and the porous half-space. In particular, the dependence of the phase velocity and attenuation of the waves on the plate stiffness, mass coupling coefficient, and degree of saturation of the medium is studied. Besides, for the limiting case of an infinitely thin plate, the comparison of the wave characteristics is carried out with those of the pure Rayleigh waves.  相似文献   

5.
本文考虑了表面张力,用多重尺度法导出了与立方 Schrodinger 方程相类似的非传播孤立波的基本方程,得到了非传播孤立波解。用毛细重力波理论解释了非传播孤立波横向谐振中波峰尖、波谷平的原因。在σ~kh 平面上首次给出了可产生非传播孤立波的二个参数区,但现有的实验点都在区域(1)中。  相似文献   

6.
横观各向同性液体饱和多孔介质中平面波的传播   总被引:11,自引:2,他引:11  
汪越胜  章梓茂 《力学学报》1997,29(3):257-268
基于孔隙介质的Biot理论1,研究了横观各向同性液体饱和多孔介质中平面波的传播特性。首先导出了波传播的特征方程并给出了其解析解,结果显示:有4种不同波速的平面体波传播;第一准纵波,第二准纵波,准横波和反平面横波。文中给出了波速和衰减的解析表达式,数值计算了频散曲线和衰减曲线,并讨论了各类准体波位移之间的耦合关系。  相似文献   

7.
A linear theory on the internal waves generated in the stratified fluid with a pycnocline is presented in this paper. The internal wave fields such as the velocity fields in the stratified fluid and velocity gradient fields at the free surface are also investigated by means of the theoretical and numerical method. From the numerical results, it is shown that the internal wave generated by horizontally moving Rankine ovoid is a sort of trapped wave which propagates in a wave guide, and its waveform is a kind of Mach front-type internal wave in the pycnocline. Influence of the internal wave on the flow fields at the free surface is represented by the velocity gradient fields resulted from the internal waves generated by motion of the Rankine ovoid. At the same time, it is also shown that under the hypothesis of inviscid fluid, the synchronism between the surface velocity gradient fields at the free surface and the internal wave fields in the fluid is retained. This theory opens a possibility to study further the modulated spectrum of the Bragg waves at the free surface.The project supported by the National Natural Science Foundation of China (40576010). The English text was polished by Keren Wang.  相似文献   

8.
In this paper, the governing equation for the non-propagating solitary waves, similar to the cubic Schrödinger equation, is derived by the multiple scales with the consideration of surface tension. The non-propagating solitary wave solution is given. It is explained by the capillary-gravity wave theory that the crests are sharpened and the troughs are flattened in the transversal harmonic of the non-propagating solitary waves. On σ~kh plane, two parameter regions are obtained in which the non-propagating solitary wave can occur, but all existing experimental parameters are in region 1 (Fig. 1).  相似文献   

9.
IntroductionInternalwaves,whichcanbeexcitedbymanykindsofdisturbancesfromthesurface,bottomorinteriorofastratifiedocean ,suchasthewindstrain ,theflowoverunevenbottomsandthemovingbodyatthesurfaceorunderwater,areremarkablyobviousasthereexistsapycnoclineorathermoclineintheocean[1,2 ] .ThepropagationofgravitysurfacewaveindeepwatergeneratedbyasteadilymovingdisturbanceisrestrictedinaV_shapedregionwithahalfangleθc =19.5°,whichiswell_knownKelvinshipwave[3 ] .Thewaveinducedbyamovingunderwaterobjectisa…  相似文献   

10.
It is shown that for some seismic media both quadratic and cubic non-linearities should be taken into account in the governing equation for longitudinal waves. The new equation is obtained to account for non-linear surface waves in a medium surrounding a non-linearly elastic rod. Exact solutions of the equation allow us to describe simultaneous propagation of tensile and compressive localized strain waves. Various interactions between these waves give rise to both the multi-bump and “Mexican hat” localized wave structures closer to the surface waves recently observed in experiments.  相似文献   

11.
The paper presents the effect of a rigid boundary on the propagation of torsional surface waves in a porous elastic layer over a porous elastic half-space using the mechanics of the medium derived by Cowin and Nunziato (Cowin, S. C. and Nunziato, J. W. Linear elastic materials with voids. Journal of Elasticity, 13(2), 125–147 (1983)). The velocity equation is derived, and the results are discussed. It is observed that there may be two torsional surface wave fronts in the medium whereas three wave fronts of torsional surface waves in the absence of the rigid boundary plane given by Dey et al. (Dey, S., Gupta, S., Gupta, A. K., Kar, S. K., and De, P. K. Propagation of torsional surface waves in an elastic layer with void pores over an elastic half-space with void pores. Tamkang Journal of Science and Engineering, 6(4), 241–249 (2003)). The results also reveal that in the porous layer, the Love wave is also available along with the torsional surface waves. It is remarkable that the phase speed of the Love wave in a porous layer with a rigid surface is different from that in a porous layer with a free surface. The torsional waves are observed to be dispersive in nature, and the velocity decreases as the oscillation frequency increases.  相似文献   

12.
We review theoretical results on anti-plane motions of polarized ceramics based on the linear theory of piezoelectricity.Solutions to dynamic problems of the propagation of bulk acoustic waves (BAW) and surface acoustic waves (SAW),vibrations of finite bodies,and applications to various piezoelectric devices including piezoelectric waveguides,resonators,mass sensors,fluid sensors,actuators,nondestructive evaluation,power harvesters (generators),transformers,and power transmission through an elastic wall by acoustic waves are discussed.Complications due to material inhomogeneity,initial stress,electromagnetic coupling,electric field gradient and semiconduction are also discussed. The paper cites 82 references.  相似文献   

13.
An investigation is conducted of propagation of surface waves in a porous medium consisting of a microscopically incompressible solid skeleton in which a microscopically incompressible liquid flows within the interconnected pores, and particularly the case where the solid skeleton deforms linear elastically. The frequency equations of Rayleigh- and Love-type waves are derived relating the dependence of wave numbers, being complex quantities, on frequency, as a result those waves are dispersive as well as inhomogeneous. Nevertheless, the amplitudes of both surface waves attenuate along the surface of the porous medium, whereas they decay exponentially receding from the surface of the medium.  相似文献   

14.
We review theoretical results on anti-plane motions of polarized ceramics based on the linear theory of piezoelectricity. Solutions to dynamic problems of the propagation of bulk acoustic waves (BAW) and surface acoustic waves (SAW), vibrations of finite bodies, and applications to various piezoelectric devices including piezoelectric waveguides, resonators, mass sensors, ?uid sensors, actuators, nondestructive evaluation, power harvesters (generators), transformers, and power transmission through an elastic wall by acoustic waves are discussed. Complications due to material inhomogeneity, initial stress, electromagnetic coupling, electric field gradient and semiconduction are also discussed. The paper cites 82 references.  相似文献   

15.
A fully nonlinear irregular wave tank has been developed using a three‐dimensional higher‐order boundary element method (HOBEM) in the time domain. The Laplace equation is solved at each time step by an integral equation method. Based on image theory, a new Green function is applied in the whole fluid domain so that only the incident surface and free surface are discretized for the integral equation. The fully nonlinear free surface boundary conditions are integrated with time to update the wave profile and boundary values on it by a semi‐mixed Eulerian–Lagrangian time marching scheme. The incident waves are generated by feeding analytic forms on the input boundary and a ramp function is introduced at the start of simulation to avoid the initial transient disturbance. The outgoing waves are sufficiently dissipated by using a spatially varying artificial damping on the free surface before they reach the downstream boundary. Numerous numerical simulations of linear and nonlinear waves are performed and the simulated results are compared with the theoretical input waves. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The propagation of elastic stress waves in a conical shell subjected to axial impulsive loading is studied in this paper by means of the finite element calculation and model experiments. It is shown that there are two axisymmetrical elastic stress waves propagating with different velocities, i.e., the longitudinal wave and the bending wave. The attenuation of these waves while propagating along the shell surface is discussed. It is found in experiments that the bending wave is also generated when a longitudinal wave reflects from the fixed end of the shell, and both reflected waves will separate during the propagation due to their different velocities. Southwest Institute of Structural Mechanics  相似文献   

17.
IntroductionIn 1 83 1 ,Faraday[1]reportedhisexperimentalobservationofsurfacewavesindifferentfluidscoveringahorizontalplatesubjectedtoaverticalvibration ,andheobservedthesurfacestandingwavesoffluidsliketheteethofaveryshortcoarsecomb .Heremarksthatthesesurfacewaveshaveafrequencyequaltoonehalfthatoftheexcitation .ThisisthefamousFaradayexperiment.WedesignatethosefluidsurfacewavesformedbyverticallyexcitationandhaveafrequencyequaltoonehalfthatoftheexcitationasFaradaywaves.FollowingthisproblemMatth…  相似文献   

18.
水波动力学研究进展   总被引:5,自引:0,他引:5  
吴耀祖 《力学进展》2001,31(3):327-343
水波动力学,历史悠久,内容丰富,此文仅进行简要的历史回顾,以阐明其进展的思想、智慧、途径以及这门学科对其它学科进展的贡献和影响。随后,引进一个新理论,能模拟三维、非定常、有完全非线性和频散(或色散)性的重力毛细波,在深度任变的水中传播和演化的现象。此外,对二维水波在海滩上之涨落问题,提供一个Lagrange-Euler观点相结合的精确计算方法,以供读者推广和应用,此外,对外力作用下的水波系统共振现象,作些补充论述。   相似文献   

19.
We consider steady free surface two-dimensional flow due to a localized applied pressure distribution under the effects of both gravity and surface tension in water of constant depth, and in the presence of a uniform stream. The fluid is assumed to be inviscid and incompressible, and the flow is irrotational. The behavior of the forced nonlinear waves is characterized by three parameters: the Froude number, F, the Bond number, τ > 1/3, and the magnitude and sign of the pressure forcing parameter ɛ. The fully nonlinear wave problem is solved numerically by using a boundary integral method. For small amplitude waves and F < 1 but not too close to 1, linear theory gives a good prediction for the numerical solution of the nonlinear problem in the case of bifurcation from the uniform flow. As F approaches 1, the nonlinear terms need to be taken account of. In this case the forced Korteweg-de Vries equation is found to be an appropriate model to describe bifurcations from an unforced solitary wave. In general, it is found that for given values of F < 1 and τ > 1/3, there exists both elevation and depression waves. In some cases, a limiting configuration in the form of a trapped bubble occurs in the depression wave solutions.  相似文献   

20.
A new method relying on the Stroh formulism and the theory of the surface impedance tensor was developed to investigate the dynamic instability of interfacial slip waves. The concept of the surface impedance tensor was extended to the case where the wave speed is of a complex value, and the boundary conditions at the frictionally contacting interface were expressed by the surface impedance tensor. Then the boundary value problem was transformed to searching for zeroes of a complex polynomial in the unit circle. As an example, the steady frictional sliding of an elastic half-space in contact with a rigid flat surface was considered in details. A quartic complex characteristic equation was derived and its solution behavior in the unit circle was discussed. An explicit expression for the instability condition of the interfacial slip waves was presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号