首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
富锂层状氧化物作为锂离子电池正极材料具有高比容量优势.采用草酸盐共沉淀法制备Li(Li0.22Ni0.17Mn0.61)O2,并用YF3包覆电极.采用X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线能谱分析(EDS)表征材料结构、观察材料形貌.结果表明,材料颗粒尺寸在100~200 nm范围,YF3包覆不会改变材料结构和形貌.电化学恒流充放电测试表明,YF3包覆Li(Li0.22Ni0.17Mn0.61)O2电极的比容量,尤其倍率比容量明显提高.60 mA·g-1电流密度下包覆电极材料30周循环后其比容量保持在220 mAh·g-1以上,1500 mA·g-1电流密度下其比容量仍可达150 mAh·g-1.电化学阻抗谱(EIS)测试结果表明,YF3包覆电极电荷转移电阻和扩散阻抗均明显降低,有利于电化学性能改善.  相似文献   

2.
以LiOH.H2O、Mn(CH3COO)2.4H2O和Ni(CH3COO)2.4H2O为原料,分别用柠檬酸(CA)与乙二胺四乙酸(EDTA)为配位剂,采用溶胶凝胶法结合固相烧结法制备富锂固溶体正极材料Li[Li0.2Ni0.2Mn0.6]O2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、激光粒度仪对所得样品的结构、形貌、粒径分布进行了表征,并测试了材料的电化学性能。采用CA配位制备的材料的电化学性能优于用EDTA配位制备的材料的电化学性能,室温下以18 mA.g-1的电流密度,在2.0~4.8 V电压范围内充放电,用CA制备的材料首次充电比容量高达324 mAh.g-1,首次库伦效率达82%;在180 mA.g-1的电流下,其可逆比容量保持在120 mAh.g-1。  相似文献   

3.
通过共沉淀法制备锂离子电池富锂锰基正极材料Li1.2Mn0.534Ni0.133Co0.133O2,并对其进行AlF3包覆。实验结果表明,通过AlF3包覆,材料的电化学性能得到明显提高。在0.2C下,包覆前材料的首次放电比容量为253 mAh.g-1,首次充放电效率仅为88.8%。经过AlF3包覆,材料的首次放电比容量提高到294 mAh.g-1,首次充放电效率高达96.4%。同样,在1.0C下循环50次,未包覆材料的放电比容量由225 mAh.g-1降到185 mAh.g-1,容量保持率仅为82.2%。经过AlF3包覆,材料的放电比容量由230mAh.g-1仅降为222 mAh.g-1,容量保持率高达96.5%。  相似文献   

4.
本文以废旧锂电池为原料,经过解体分选、硫酸浸出、除杂净化等一系列工序,回收得到含镍钴锰的混合溶液,采用氢氧化物共沉淀法制备LiCo1/3Ni1/3Mn1/3O2正极材料。分别采用XRD,TG/DSC,SEM对其进行表征,并通过恒电流充放电测试和循环性能测试对材料的电化学性能进行分析。结果表明,合成得到的LiCo1/3Ni1/3Mn1/3O2正极材料具有典型的层状结构,并呈现球形或类球形的形貌。在0.1C,电压范围为2.75~4.3 V的条件下,经恒流充放电测试,它的首次放电容量为136.5 mAh.g-1,经过30个循环后,放电容量为124.9 mAh.g-1,容量保持率高达91.5%,表现出较优异的电化学性能。  相似文献   

5.
单斜Li3V2(PO4)3/C复合材料的制备及其电化学性能   总被引:1,自引:0,他引:1  
以LiOH·H2O、V2O5、H3PO4和蔗糖为原料,采用软化学法制备了锂离子电池正极材料Li3V2(PO4)3/C.通过X射线衍射(XRD)、扫描电镜(SEM)对产物的结构和形貌进行表征,采用恒电流充放电、电化学阻抗考察了产物的电化学性能.结果表明.当煅烧温度达到700℃时,杂质相衍射峰消失,所得的样品为纯相的单斜Li3V2(PO4)3.颗粒粒度为1~2 μm;在3.0~4.5 V电压范围内以0.2C倍率充放电,首次放电比容量达到148.2 mAh·g-1,第50次循环比容量仍为144 mAh·g-1,容量保持率为97%,具有良好的循环性能;另外,样品还具有很好的倍率性能和高温性能.  相似文献   

6.
采用浓度梯度加料的方式,首先沉淀制备了核为Ni(OH)2、壳为镍钴锰氢氧化物浓度梯度包覆的复合前驱体,然后配锂高温焙烧,合成了梯度包覆的镍酸锂复合正极材料Li[Ni0.92Co0.04Mn0.04]O2。采用X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试等方法对材料的结构、表观形貌及电化学性能进行了表征。结果表明,该材料具有良好的六方单相层状α-NaFeO2结构,呈类球型状。切面元素线扫描显示该材料的包覆壳层中主要金属元素呈梯度变化。同时该新型梯度包覆的镍酸锂复合正极材料表现出了优越的电化学性能:在25℃下,2.8~4.3 V充放电范围,0.1C首次放电比容量可达198.3 mAh.g-1,循环40次容量保持96.8%;1C和2C倍率下放电比容量可达175 mAh.g-1和165.1 mAh.g-1。55℃下,该材料首次放电比容量可达236.1 mAh.g-1,循环40次容量仍能保持77.5%。  相似文献   

7.
应用柠檬酸辅助溶胶-凝胶法.合成了Y3+掺杂的尖晶石LiNi0.49Mn1.49Y0.02O4材料.XRD、循环伏安、恒流充放电和交流阻抗测试结果表明,Y3+的掺杂能提高LiNi0.5Mn1.5O4的倍率和循环性能.在电压区间3.5~4.9V,1C倍率下,其初始放电比容量为114.9 mAh.g-1,100次循环后放电比容量仍可达113.0 mAh.g-1,容量保持率为98.3%.掺杂Y3+能减小材料界面阻抗.  相似文献   

8.
采用高能球磨法通过不同球磨时间合成 xLiF-(Ni1/6Co1/6Mn4/6)3O4新型正极材料,并对材料进行石墨烯复合改性,提高其性能。结合X-射线衍射(XRD)、扫描电镜(SEM)、电化学性能测试和X-射线电子能谱(XPS)对xLiF-(Ni1/6Co1/6Mn4/6)3O4正极材料性能进行表征。研究表明,球磨24小时产物的放电容量最高,为157.3 mAh g-1。并且LiF与(Ni1/6Co1/6Mn4/6)3O4比例为1.5:1(x=1.5)时放电容量最高。此外正极材料添加石墨烯能改善材料的电化学性能,石墨烯复合量为20%,在室温、0.05 C(1C=250 mAh g-1)、1.5 -4.8 V下,材料首圈的放电比容量为235 mA hg -1,相较于无石墨烯的材料,在1 C和5 C倍率下,放电比容量分别为151和114 mAh g-1。同时分析了正极材料放电容量随截止电压的变化,确定了复合正极材料在高电压下有获得更高放电容量的潜力。  相似文献   

9.
以过渡金属乙酸盐和乙酸锂为原料,柠檬酸为螯合剂,通过溶胶-凝胶法结合高温煅烧法制备了锂离子电池富锂锰基正极材料xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2,采用X射线衍射(XRD),扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构,形貌及电化学性能进行了表征.结果表明:x=0.5时,在900°C下煅烧12h得到颗粒均匀细小的层状xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2材料,并具有良好的电化学性能,在室温下以20mA·g-1的电流密度充放电,2.0-4.8V电位范围内首次放电比容量高达260.0mAh·g-1,循环40次后放电比容量为244.7mAh·g-1,容量保持率为94.12%.  相似文献   

10.
采用两步加热高温固相法合成了掺杂Nd3+的LiFe1-xNdxPO4/C复合材料(x=0,0.01,0.02,0.04,0.06,0.08).用TG-DSC对前驱体进行分析和SQUID(超导量子干涉仪)对样品中Fe3+的磁性测定,优化了合成工艺条件;采用XRD、FE-SEM、EDS等方法分析了样品的结构并对其电化学性能进行了测试.结果表明:LiFe1-xNdxPO4/C复合材料具有橄榄石型结构;当Nd3+的掺杂量6%(物质的量分数)、煅烧温度700℃、煅烧时间16h时,样品在0.2C(1C=170.0mA·g-1)电流密度下的最大放电比容量可达165.2mAh·g-1,循环100次后的容量保持率仍为92.8%,在1C、2C、5C下的最大放电比容量分别为146.8、125.7和114.8 mAh·g-1.通过测定样品在不同较低倍率下的放电比容量,采用外推法得出制备样品的实测理论比容量为168.7 mAh·g-1.  相似文献   

11.
通过对电沉积法得到的Ni-Cu合金镀层进行电化学去合金化处理, 制备了纳米多孔结构金属镍膜. 采用循环伏安法对多孔金属镍膜在1 mol·L-1 KOH溶液中进行阳极氧化处理, 获得了纳米多孔结构的镍基复合膜电极. 应用扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和电化学技术对所制备的膜电极的物理性质及赝电容特性进行了表征. SEM、XRD和XPS的测试结果表明, 所制备的纳米多孔结构镍基复合膜由Ni、Ni(OH)2和NiOOH组成. 电化学实验结果显示, 该复合膜在20 A·g-1的充放电电流密度下, 给出了578 F·g-1的初始比电容; 在1000次充放电循环后, 它的比电容值为544 F·g-1, 电容保持率为94%. 纳米多孔结构有利于KOH电解液的渗透, 从而促进反应物种在电极内部的传输; 纳米多孔的金属镍基体可以提高Ni(OH)2膜的电子导电性; 纳米大小的Ni(OH)2颗粒能够缩短质子的固相扩散路径. 上述因素是所制备的纳米多孔结构镍基复合膜电极具有优异赝电容特性的主要原因.  相似文献   

12.
刘正 《合成化学》2016,(10):861-865
首次报道通过一种聚苯乙烯磺酸钠(PSS)和三嵌段共聚物(P123)辅助的水热法,以Ni(NO3)2为原料,合成了新颖的绒球状β-氢氧化镍微米球(P1),其结构和形貌经X-射线衍射、扫描电镜和透射电镜表征。电化学测试结果表明:P1具有良好的电化学性质,在1 A·g-1电流密度下,电容量达1 214 F·g-1,经过1 000次循环后其容量可保持90%以上。  相似文献   

13.
以硝酸钴和丙三醇为反应物通过反应条件的改变控制制备出Co3O4纳米线.利用粉末X射线衍射(XRD),扫描电子显微镜(SEM)和透射电子显微镜(TEM)对产物的形貌与结构进行了表征.实验发现,在低扫描速率下,Co3O4纳米线电极的循环伏安(CV)曲线呈现出两对氧化还原峰.恒电流充放电实验中,氧化钴纳米线电极在1A.g-1电流密度下的电容为163F.g-1;在1和4A.g-1条件下,其容量随循环次数的增加先上升后下降,1000次充放电循环后容量保持率分别在98%和80%以上,继续增加循环次数则容量下降比较明显.锂离子电池性质测试中,氧化钴纳米线的放电容量为1124mAh.g-1,然而放电容量随循环次数增加下降较快.基于实验结果,对Co3O4纳米线的形成机理及其结构与电化学性质之间的关系进行了探讨.  相似文献   

14.
二氧化锰微米球制备及其于超级电容器的应用   总被引:1,自引:0,他引:1  
利用KMnO4氧化MnCO3微米球前躯体制备MnO2微米球.X射线衍射(XRD)、扫描电子显微镜(SEM)、循环伏安(CV)法等测试表明:该MnO2微米球由弱结晶α-MnO2构成,粒径为0.5~2μm.测试样品的MnO2微米球载量为5 mg.cm-2时,在2 mol.L-1(NH4)2SO4溶液中表现出良好的电容性能:其于2 mV.s-1的扫速下比电容达到了135.6 F.g-1;即使是100 mV.s-1的高扫速,比电容仍保持为118.8 F.g-1.500次循环过程中充放电效率保持在87.8%以上.第500次循环的比电容为110.5 F.g-1.  相似文献   

15.
以MoO3为基体,分别用超声分散法与碳纳米管(CNTs),化学原位聚合法与聚吡咯(PPy)复合,制备了MoO3/CNTs,MoO3/PPy和MoO3/CNTs/PPy纳米复合材料。利用XRD、SEM、TEM对复合材料进行物性表征,在1 mol·dm-3的HCl溶液中对MoO3,MoO3/CNTs,MoO3/PPy和MoO3/CNTs/PPy四个样品进行电化学测试。结果表明,复合材料的比容量均高于MoO3,其中,由于MoO3/PPy特殊的一维核壳结构使其具有较高的比表面积,相比较其他复合材料而言,有更好的电化学活性。该材料的最大比电容为450.8F·g-1。  相似文献   

16.
通过共沉淀法与固相法相结合制备了掺锌的高稳定性Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0, 0.02, 0.05)正极材料. 循环伏安(CV)曲线表明Zn掺杂使氧化峰与还原峰的电势差减小到0.09 V, 电化学阻抗谱(EIS)曲线表明Zn掺杂使电极的阻抗从266 Ω减小到102 Ω. Li+嵌入扩散系数从1.20×10-11 cm2·s-1增大到 2.54×10-11 cm2·s-1. Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以0.3C充放电在较高的截止电压(4.6 V)下比其他两种材料的电化学循环性能更稳定, 其第二周的放电比容量为176.2 mAh·g-1, 循环100周后容量几乎没衰减; 高温(55 °C)下充放电循环100周, 其放电比容量平均每周仅衰减0.20%, 远小于其他两种正极材料(LiNi1/3Co1/3Mn1/3O2平均每周衰减0.54%; Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2平均每周衰减0.38%). Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以3C充放电时其放电比容量可达142 mAh·g-1, 高于其他两种正极材料. 电化学稳定性的提高归因于Zn掺杂后减小了电极的极化和阻抗, 增大了锂离子扩散系数.  相似文献   

17.
年思宇  张燕  张国峰  秦攀  宋吉明 《化学通报》2019,82(11):989-994
以Co(NO_3)_2·6H_2O和Ni(NO_3)_2·6H_2O为钴源和镍源,采用溶剂热法一步合成了Co(OH)_2/Ni(OH)_2复合材料,通过煅烧该复合材料可得到NiCo_2O_4。采用XRD、SEM、BET等对材料进行了表征,结果表明,Co(OH)_2/Ni(OH)_2复合材料是薄片组成的花状形貌,比表面积为37. 48m~2/g。电化学性能测试表明,Co(OH)_2/Ni(OH)_2复合材料比NiCo_2O_4具有更高的比电容值和容量保持率。在0. 5A/g的电流密度下,复合材料比电容值可达到1097. 8F/g,而NiCo_2O_4比电容值仅为86. 1F/g。因此,与煅烧后的NiCo_2O_4材料相比,Co(OH)_2/Ni(OH)_2复合材料具有更加优良的电化学性能,这为高性能超级电容器材料的制备提供了一个新思路。  相似文献   

18.
利用V2O5、LiOH·H2O、H2O2、NH4H2PO4与柠檬酸为原料,通过溶胶-凝胶法合成了碳包覆的Li3V2(PO4)3复合正极材料。采用XPS、XRD、SEM、TEM、拉曼光谱和电化学方法对材料的性能进行了研究。还研究了其结构与焙烧温度、样品电导率和电化学性能的关系。研究表明复合材料具有空间群为P21/n的单斜结构,表面包覆粗糙多孔的碳层。在800 ℃下制备的碳包覆样品的电子导电率高达9.81×10-5 S·cm-1,约为高温固相氢气还原法制备的未包覆碳Li3V2(PO4)3的10000倍。测试结果表明碳包覆Li3V2(PO4)3的电化学性能远优于未包覆碳的样品。在3.0~4.3 V电压范围内,以0.1C和2C倍率充放电时,碳包覆的Li3V2(PO4)3具有高比容量(分别为128和109 mAh·g-1)和优异的循环性能。  相似文献   

19.
本文通过溶剂热法"一锅"制备了镍掺杂的花状纳米碳片(Ni/FCNAs)。借助X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对该复合材料的表面形貌和结构进行了分析。循环伏安和恒流充/放电测试结果表明,Ni/FCNAs具有较大的比电容值且电化学稳定性良好。在电流密度为0.1 A.g-1时,Ni/FCNAs电极的比电容可达176 F.g-1。本文同时也提出了Ni/FCNAs可能的形成机理。  相似文献   

20.
由半固相法制得锂离子电池负极材料Li4Ti5O12,并研究了Li4Ti5O12的碳包覆改性.采用XRD、SEM、TEM以及HRTEM观察和分析产物的相结构与形貌.采用恒流充放电、循环伏安法和交流阻抗技术测试了材料的电化学性质.结果表明,Li4Ti5O12因颗粒团聚电化学性能严重下降,该电极在0.1C和0.5C首周期放电容量分别为121.7和87.6 mAh·g-1;碳包覆Li4Ti5O12/C材料呈球形分布,能抑制颗粒团聚,该电极倍率<0.5C时的放电比容量大于180 mAh·g-1,超过Li4Ti5O12的理论放电比容量(175 mAh·g-1);在1C、5C和10C倍率下,其容量仍保持在136、79.9和58.3 mAh·g-1,碳包覆改性材料具有优异的循环寿命和高倍率性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号