首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six polyoxometalate-based (POM) hybrid materials based on octamolybdate building blocks and metal-organic fragments with flexible multidentate ligand, namely [Cu(II)(2)(ttb)(2)(β-Mo(8)O(26))(H(2)O)(2)]·2H(2)O (1), Cu(I)(4)(ttb)(2)(β-Mo(8)O(26))(H(2)O) (2), [Cu(I)(4)(ttb)(3)(β-Mo(8)O(26))] (3), [Ni(2)(ttb)(2)(β-Mo(8)O(26))(H(2)O)(6)]·2H(2)O (4), [Zn(2)(ttb)(2)(α-Mo(8)O(26))(H(2)O)(2)] (5), and [Ag(4)(ttb)(2)(β-Mo(8)O(26))] (6), where ttb = 1,3,5-tris(1,2,4-triazol-1-ylmethyl)-2,4,6-trimethyl benzene, have been synthesized under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, TGA, IR spectra, and electrochemistry. Compounds 1 and 2 exhibit three-dimensional (3D) 2-fold interpenetrating frameworks with (3,6)-connected (4(1)·6(2))(4(2)·6(10)·10(3)) and (3,4)-connected (6(2)·8(1))(2)(6(2)·8(4)) topologies, respectively. We are not aware of any other examples of interpenetrating (3,6)- and (3,4)-connected frameworks which involves the octamolybdates. Compound 3 shows a rare two-dimensional (2D) 2-fold interpenetrating network structure. In compound 4, a 3D supramolecular framework with the channels is constructed by the hydrogen-bonding interactions between (β-Mo(8)O(26))(4-) polyanions and the Ni-ttb double layers, in which the guest (β-Mo(8)O(26))(4-) anions are included. If ZnO interactions are considered, the structure of 5 is a 3D (3,4)-connected framework with (4·8(2))(4·8(2)·10(3)) topology. In 6, the ttb ligand as a tetradentate ligand links the Ag atoms to yield a 2D POM-based network. By careful inspection of the structures of 1-6, it can be seen that the ttb ligand, the metal ion and the coordination mode of the octamolybdate anion play important roles in the formation of the POM-based MOFs.  相似文献   

2.
Two novel hybrid materials based on two kinds of octamolybdate anions and metal-organic frameworks (MOFs), namely, [Ag(8)(L(1))(4)(α-Mo(8)O(26))(β-Mo(8)O(26))(H(2)O)(3)]·H(2)O (1) and [Cu(I)(3.1)Cu(II)(0.5)(β-Mo(8)O(26))(0.5)(ζ-Mo(7)(VI)Mo(V)O(26))(0.5)(L(2))(2)(H(0.8)L(2))(0.5)] (2), where L(1) = 1,1'-(1,3-propanediyl)bis[2-(4-pyridyl)benzimidazole] and L(2) = 1,1'-(1,4-butanediyl)bis[2-(3-pyridyl)benzimidazole], have been successfully synthesized. Crystal structure analysis revealed that 1 is a three-dimensional (3D) framework constructed of silver(I)-organic sheets and two types of (Mo(8)O(26))(4-) isomers. Compound 2 is a rare 3D framework containing copper(I,II)-organic cages and 1D channels occupied by the (ζ-Mo(7)(VI)Mo(V)O(26))(5-) and (β-Mo(8)O(26))(4-) anions. The two compounds were characterized by elemental analysis, IR spectroscopy, diffuse reflectivity spectroscopy, and photoluminescent spectroscopy. In addition, the photocatalytic behavior of 1 was investigated.  相似文献   

3.
Six inorganic-organic hybrid compounds, namely, [Cu(2)(2,4'-tmbpt)(2)(β-Mo(8)O(26))(H(2)O)(2)]·7H(2)O (), [Cu(2,4'-tmbpt)(γ-Mo(8)O(26))(0.5)(H(2)O)]·H(2)O (), [Co(2,4'-Htmbpt)(2)(γ-Mo(8)O(26))(H(2)O)(2)] (), [Zn(2,4'-Htmbpt)(2)(γ-Mo(8)O(26))(H(2)O)(2)] (), [Ni(2,4'-tmbpt)(α-Mo(8)O(26))(0.5)(H(2)O)]·2.5H(2)O () and [Ag(2,4'-Htmbpt)(β-Mo(8)O(26))(0.5)] (), have been synthesized under hydrothermal conditions (2,4'-tmbpt = 1-((1H-1,2,4-triazol-1-yl)methyl)-3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole). The structures of compounds have been determined by single-crystal X-ray diffraction analyses and characterized by infrared spectra (IR), elemental analyses, powder X-ray diffraction (PXRD) analyses and thermogravimetric analyses (TGA). Compound shows a 3D (3,4)-connected framework constructed by the 2D Cu(ii)-organic fragments and [β-Mo(8)O(26)](4-) anions. Compound exhibits a 2D layer structure based on Cu(ii)-organic chains and [γ-Mo(8)O(26)] chains. The layers are extended into a 3D supramolecular framework by hydrogen-bonding interactions. Compounds and are isostructural, and display 1D chain structures. The chains are further interlinked by hydrogen-bonding interactions to form 3D supramolecular architectures. Compound shows a 3D framework based on the 2D Ni(ii)-organic fragments and [α-Mo(8)O(26)](4-) anions. In compound , the 1D chains constructed by the Ag(i) ions, 2,4'-Htmbpt ligands and [β-Mo(8)O(26)](4-) anions are extended by hydrogen-bonding interactions into a 2D supramolecular layer. Each layer threads into the adjacent layers, yielding a 2D → 3D interdigitated structure. Moreover, the photoluminescent properties of and , the optical band gaps of , and the photocatalytic properties of have also been investigated.  相似文献   

4.
采用离子热法合成了一个由八钼酸盐和过渡金属配合物构筑的新颖的三维(3D)自穿插网络的有机-无机杂化材料Cu5BBTZ3H2O[β-MoMo7O26][1,BBTZ=1,4-二(三咪唑-1-乙基)苯]. 化合物1具有由3D聚圆环结构和(4,4)二维层构筑的3D自穿插框架结构. 通过单晶X射线衍射、 元素分析、 红外光谱和热重分析对化合物1的结构进行了表征, 并初步研究了其光催化产氢活性.  相似文献   

5.
Lan YQ  Li SL  Wang XL  Shao KZ  Du DY  Zang HY  Su ZM 《Inorganic chemistry》2008,47(18):8179-8187
Six polyoxometalate (POM)-based hybrid materials have been designed and synthesized based on octamolybdate building blocks and copper-organic units at different pH values under hydrothermal conditions, namely, [H2bbi][Cu(II)(bbi)2(beta-Mo8O26)] (1), [Cu(II)(bbi)2(H2O)(beta-Mo8O26)0.5] (2), [Cu(II)(bbi)2(alpha-Mo8O26)][Cu(I)(bbi)]2 (3), [Cu(II)Cu(I)(bbi)3(alpha-Mo8O26)][Cu(I)(bbi)] (4), [Cu(I)(bbi)]2[Cu(I)2(bbi)2(delta-Mo8O26)0.5][alpha-Mo8O26]0.5 (5), and [Cu(I)(bbi)][Cu(I)(bbi)(theta-Mo8O26)0.5] (6), where bbi is 1,1'-(1,4-butanediyl)bis(imidazole). Their crystal structures have been determined by X-ray diffraction. In compound 1, the bbi ligands with bis-monodentate coordination modes link Cu(II) cations to generate a 2D copper-organic unit with (4, 4) net, which is pillared by the (beta-Mo8O26)(4-) anions to form a 3D framework with alpha-Po topology. The similar copper-organic units are connected alternately by (beta-Mo8O26)(4-) anions to generate a 3D 2-fold interpenetrating (4,6)-connected framework with (4(4) x 6(2))(4(4) x 6(10) x 8) topology in compound 2. Compounds 3 and 4 are supramolecular isomers with polythreaded topology. If Cu (I)...O interactions are considered, the structure of 3 is a novel self-penetrating (3,4,6)-connected framework with (5(2) x 8)2(5(4) x 6 x 8)(4(4) x 6(10) x 10) topology, and the structure of 4 is a (4,6)-connected framework with (4(2) x 6(3) x 7)(5.6(4) x 8)(4(2) x 5(6) x 6(6) x 8)(4(2) x 5(6) x 6(4) x 7 x 8(2)) topology. Different from compounds 3 and 4, compounds 5 and 6 are supramolecular isomers with polythreaded topology based on different octamolybdate isomers. By careful inspection of the structures of 1-6, it is believed that various copper-organic units, which are formed by bbi ligands combined with Cu(II)/Cu(I) cations, octamolybdates with different types and coordination modes, and the nonbonding interactions between polyanions and copper-organic units are important for the formation of the different structures. In addition, with step by step increasing of the amount of organic amine, we have achieved the transformation of Cu(II) ions into Cu(I) ones in different degrees in POMs-based metal-organic frameworks (MOFs) for the first time. The infrared spectra, X-ray powder diffraction, and thermogravimetric analyses have been investigated in detail for all compounds, and the luminescent properties have been also been investigated for compounds 3 and 4.  相似文献   

6.
A comprehensive study of the isomer-independent synthesis of TRIS ((HOCH(2))(3)CNH(2)) Mn-Anderson compounds from Na(2)MoO(4)·2H(2)O, via the corresponding octamolybdate species, is presented. Three octamolybdate salts of [Mo(8)O(26)](4-) in the β-isomer form, with tetramethylammonium (TMA), tetraethylammonium (TEA) and tetrapropylammonium (TPA) as the counter cation, were synthesised from the sodium molybdate starting material. Fine white powdery products for the three compounds were obtained, which were fully characterised by elemental analysis, TGA, solution and solid state Raman, IR and ESI-MS, revealing a set ratio of Na and organic cations for each of the three compounds; (TMA)(2)Na(2)[Mo(8)O(26)] (1), (TEA)(3)Na(1)[Mo(8)O(26)] (2) and (TPA)(2)Na(2)[Mo(8)O(26)] (3), and the analyses also confirmed that the three compounds all consisted of the octamolybdate in the β-isomeric form. ESI-MS analyses of 1, 2 and 3 show similar fragmentation for these β-isomers compared to the previously reported study for the α-isomer ((TBA)(4)[α-Mo(8)O(26)]) (A) in the synthesis of ((TBA)(3)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)]) (B), and compounds 1, 2 and 3 were successfully used to synthesise equivalent TRIS Mn-Anderson compounds: (TMA)(3)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)] (4), (TEA)(3)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)] (5) and (TPA)(2)Na(1)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)] (6), as well as Na(3)[MnMo(6)O(18)((OCH(2))(3)CNH(2))(2)] (7). This is the first example where symmetric organically-grafted Mn-Anderson compounds have been synthesised in DMF from anything but the {Mo(8)O(26)} α-isomer.  相似文献   

7.
1INTRODUCTION More and more chemists have currently been inte-rested in the transition metal oxides(so-called polyoxometalates)mainly owing to their structural varieties and promising potential applications in catalysis,biology,medicine and materials science[1].Of the various polyoxometalate structures,the most interesting one is the molybdate family with a va-riety of structural polymers including{Mo2},{Mo4},{Mo6},{Mo8}.etc.These molybdate polymersmight act as versatile building blocks …  相似文献   

8.
A high dimensional copper coordination polymer {[Cu2(btb)2(H2O)4( -Mo8O26)] H2O}n(1, btb = 1,4-bis(1,2,4-triazol-1-yl)butane) based on [ -Mo8O26]4 anions and flexible bis(triazole) ligands has been synthesized and characterized by elemental analysis, IR spectra, single-crystal X-ray diffraction and thermal analysis. The crystallographic data show that complex 1 crystallizes in triclinic space group P with a = 9.7550(10), b = 10.3996(11), c = 10.9516(11), = 77.622(2), = 89.602(2), = 87.610(2), V = 1084.25(19)3, C16H34Cu2Mo8 N12O31, Mr = 1785.15, Dc = 2.734 g cm 3, μ(MoKα) = 3.303 mm 1, F(000) = 856, GOF = 1.060, Z = 1, the final R = 0.0376 and wR = 0.0982 for I > 2 (I). In 1, the inorganic building block [ -Mo8O26]4 anions are connected with each other to generate one-dimensional chains. Then the chains are further connected by Cu2+ ions to form a three-dimensional (3D) inorganic framework [Cu2( -Mo8O26)]n containing quadrangular channels, with the pcu alpha-Po primitive cubic topology. The btb ligands are encapsulated into the void of the 3D inorganic framework forming a new three-dimensional architecture. The thermal analysis illustrates that complex 1 retains a comparatively good thermal stability.  相似文献   

9.
Two compounds, namely, [Cu(bbi)](2)[Cu(2)(bbi)(2)(delta-Mo(8)O(26))0.5][alpha-Mo(8)O(26)]0.5 (1) and [Cu(bbi)][Cu(bbi)(theta-Mo(8)O(26))0.5] (2), where bbi is 1,1'-(1,4-butanediyl)bis(imidazole), were synthesized under hydrothermal conditions at different pH values. Their crystal structures were determined by X-ray diffraction. Compounds 1 and 2 are supramolecular isomers with a polythreaded topology based on octamolybdate building blocks.  相似文献   

10.
Four di-Cu(II)-substituted sandwich-type germanomolybdates, (H(2)en)(2)H(7){[Na(0.5)(H(2)O)(3.5)](2)[Cu(2)(β-Y-GeMo(9)O(33))(2)]}·6H(2)O (1), (H(2)en)(2)H{[Na(2.5)(H(2)O)(12)](2)[Cu(en)(2)][Cu(2)(β-Y-GeMo(9)O(33))(2)]}·8H(2)O (2), [Na(4)(H(2)O)(12)](2)H(4)[Cu(2)(β-Y-GeMo(9)O(33))(2)]}·11H(2)O (3) and [Cu(en)(2)](2)[Cu(en)(2)(H(2)O)](2){[Cu(en)(2)](2)[Cu(2)(β-Y-GeMo(9)O(33))(2)]}·8H(2)O (4) (en = ethylenediamine), have been prepared. It is interesting that 1-3 were obtained in the same aqueous solution reaction system but exhibited different structures: 1 displays a 0D structure, 2 shows an organic-inorganic 1D chain structure, while 3 displays a 2D network. 4 was synthesized under hydrothermal condition by the same reagents, which represents the first transition metal-sandwiched organic-inorganic 2D heteropolymolybdate.  相似文献   

11.
We investigate the reactivity of MoO(4)(2-) toward six organoammonium cations (+)(Me(3-x)H(x)N)(CH(2))(2)(NH(y)Me(3-y))(+) (x, y = 1-3) at different synthesis temperatures ranging from 70 to 180 °C. A total of 16 hybrid organic-inorganic materials have been synthesized at an initial pH of 2, via ambient pressure and hydrothermal routes, namely, (H(2)en)[Mo(3)O(10)]·H(2)O (1), (H(2)en)[Mo(3)O(10)] (2), (H(2)en)[Mo(5)O(16)] (3), (H(2)MED)(2)[Mo(8)O(26)]·2H(2)O (4), (H(2)MED)[Mo(5)O(16)] (5), (N,N-H(2)DMED)(2)[Mo(8)O(26)]·2H(2)O (6), (N,N-H(2)DMED)(2)[Mo(8)O(26)]·2H(2)O (7), (N,N'-H(2)DMED)(2)[Mo(8)O(26)] (8), (N,N'-H(2)DMED)[Mo(5)O(16)] (9), (H(2)TriMED)(2)[Mo(8)O(26)]·4H(2)O (10), (H(2)TriMED)(2)[Mo(8)O(26)]·2H(2)O (11), (H(2)TriMED)[Mo(7)O(22)] (12), (H(2)TMED)(2)[Mo(8)O(26)]·2H(2)O (13), (H(2)TMED)(2)[Mo(8)O(26)] (14), (H(2)TMED)(2)[Mo(8)O(26)] (15), and (H(2)TMED)[Mo(7)O(22)] (16). All of these compounds contain different polyoxomolybdate (Mo-POM) blocks, i.e., discrete β-[Mo(8)O(26)](4-) blocks in 6, 10, 13, 14, (1)/(∞)[Mo(3)O(10)](2-), and (1)/(∞)[Mo(8)O(26)](4-) polymeric chains in 1, 2, 4, 7, 8, and 15, respectively, and (2)/(∞)[Mo(5)O(16)](2-) and (2)/(∞)[Mo(7)O(22)](2-) layers in 3, 5, 9, 12, and 16, respectively. The structures of 5, 9, and 14 have been resolved by single-crystal X-ray analyses. The characterization of the different Mo-POM blocks in 1-16 by Fourier transform Raman spectroscopy is reported. The impact of the synthesis temperature on both the composition and topology of the Mo-POM blocks is highlighted.  相似文献   

12.
Two novel inorganic-organic hybrid compounds based on octamolybdates, namely, [Cu(H(2)L)(2)(γ-Mo(8)O(26))]·(Mo(6)O(19))·2H(2)O (1) and [Cu(H(2)L)(γ-Mo(8)O(26))(H(2)O)(2)]·5H(2)O (2), where L = 1,1'-(1,5-pentanediyl)bis[2-(4-pyridyl)benzimidazole], have been successfully synthesized at different pH values under hydrothermal conditions. Compound 1, which is hydrothermally prepared at pH ≈ 3.5, exhibits an entirely new type of intercalated layer. The nanosized hexamolybdate anions as guests are introduced into the layers. When the pH value is adjusted to 2, a structurally-different complex 2 was obtained. Compound 2 shows a unique 3D 4-connected framework constructed by inorganic layers and H(2)L(2+) ligands as bridges. The two compounds were characterized by elemental analyses, IR spectra and TGA. In addition, the electrochemical properties of 1-modified carbon paste electrode (CPE) have also been investigated in 1 M H(2)SO(4) aqueous solution.  相似文献   

13.
Wu CD  Lu CZ  Zhuang HH  Huang JS 《Inorganic chemistry》2002,41(22):5636-5637
The one-dimensional polymer, [Cu(2)(C(8)H(6)N(2))(2)(C(7)H(6)N(2))](2)[Mo(8)O(26)] (1), which consists of beta-[Mo(8)O(26)](4)(-) anions linked by quinoxaline and its oxidized product benzimidazole ligands coordinated to binuclear copper(I) fragments, provides the first demonstration that the isolated copper(I) complex under hydrothermal conditions "captures" the reduction product of original starting organonitrogen ligand to form a copper(I)-beta-octamolybdate complex.  相似文献   

14.
Wang X  Hu H  Tian A  Lin H  Li J 《Inorganic chemistry》2010,49(22):10299-10306
Three metal-organic networks based on Keggin-type polyoxometalates (POMs) have been hydrothermally synthesized by tuning the spacer lengths of bis(tetrazole)-functionalized thioether ligands and structurally characterized: [Cu(4)(bmtm)(4)][SiW(12)O(40)]·2H(2)O (1), [Cu(4)(bmte)(3.5)][SiW(12)O(40)] (2), and [Cu(4)(bmtp)(4)][SiW(12)O(40)] (3) [bmtm = 1,1'-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)methane, bmte = 1,2-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)ethane, and bmtp = 1,5-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)pentane]. The spacer lengths and sulfhydryl of bis(tetrazole)-functionalized thioether ligands play important roles in the final framework formation, as shown by X-ray diffraction analysis. In compound 1, with the connection of a N,S bridge of bmtm, two kinds of binuclear Cu(I) units are formed and linked to construct a one-dimensional (1D) chain. The [SiW(12)O(40)](4-) (SiW(12)) cluster provides four terminal O atoms linking four binuclear units to generate a two-dimensional layer with (8(3))(2)(8(5)·10) topology. In compound 2, centrosymmetric octameric moieties composed of two equivalent tetrameric Cu(I) units are bridged by bmte ligands to form a 1D chain. The SiW(12) clusters show an unusual (2,8)-connected mode to connect with the 1D chain and construct a four-connected three-dimensional (3D) network with 5(3)·6(2)·7 topology. Compound 3 exhibits a rare 3D host framework with a type of large cavity and two types of small windows. The SiW(12) clusters as templates are strongly cemented into the large cavities and completely encircled by small windows. Furthermore, the compound 2 bulk-modified carbon-paste electrode (2-CPE) displays good electrocatalytic activity toward the reduction of nitrite.  相似文献   

15.
A new compound,[Cu(mal)(tmdpy)(H2O)]·4H2O(1,H2mal = malonic acid,tmdpy = 4,4'-trimethylenedipyridine) has been synthesized by the hydrothermal synthesis and structurally characterized by X-ray crystallography. It crystallizes in triclinic,space group P1 with a = 9.1662(6),b = 10.6266(7),c = 11.3056(7) ,α = 84.6390(10),β = 72.1030(10),γ = 73.0420(10) o,V = 1002.37(11) 3,C16H26CuN2O9,Mr = 453.93,Z = 2,Dc = 1.504 g/cm3,μ = 1.140 mm-1,F(000) = 474,R = 0.0375 and wR = 0.0975 for 3187 observed reflections(I > 2σ(I)) . In the structure of 1,the tmdpy ligands link the [Cu(mal)(H2O) ] units into an infinite chain,and the water molecules and carboxylate oxygen donors(O(2) and O(4)) from the mal ligands cooperatively built an interesting hydrogen bonding network with unprecedented pseudo water tape substructures.  相似文献   

16.
Two new polyoxomolybdate compounds,namely CuII2(HL)3]2[Mo8O26]·(H2O)4(1) and [NiII(HL)3]2(Mo8O26)·(H2O)3(2)(HL = 3-(2-pyridyl)pyrazole),were designed and synthesized under hydrothermal conditions.X-ray diffraction analyses reveal that compound 1 consists of one β-Mo8O264-cluster and a Cu2 dimer which is built from two Cu(II) ions linked by three 3-(2-pyridyl)pyrazole ligands.Compound 2 is generated by two kinds of polyoxomolybdate clusters of α-[Mo8O26]4-and β-[Mo8O26]4-.In complexes 1 and 2,the multi-dimensional frameworks are con-structed with the help of hydrogen-bonding links between the terminaloxygen atoms of [Mo8O26]4-,water molecules,and 3-(2-pyridyl)pyrazole ligands.Crystal data of 1:C24H25Cu2Mo4N9O15,Mr = 1190.37,monoclinic,space group P21/c,a = 10.850(2),b = 18.510(4),c = 17.230(3) ,β = 100.57(3)°,V = 3401.6(12) 3,Z = 4,Dc = 2.324 g/cm3,F(000) = 2312,μ = 2.742 mm-1,R = 0.0302 and wR = 0.0775(Ⅰ 2σ(Ⅰ));Crystal data for 2:C48H48Mo8N18Ni2O29,Mr = 2225.98,monoclinic,space group P21/n,a = 20.799(2),b = 14.7970(13),c = 23.141(2) ,β = 91.6180(10)°,V = 7119.0(11) 3,Z = 4,Dc = 2.077 g/cm3,F(000) = 4344,μ = 1.968 mm-1,R = 0.0309 and wR = 0.0696(Ⅰ 2σ(Ⅰ)).  相似文献   

17.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

18.
Inorganic-organic hybrid materials based on Keggin polyoxometalate building blocks combined with Cu(II)/Cu(I) and flexible fluconazole ligand [1-(2,4-difluorophenyl)-1,1-bis[(1H-1,2,4-triazol-1-yl)methyl]methanol] (Hfcz) have been obtained by hydrothermal methods, namely, [Cu(II)(2)(Hfcz)(4)(SiW(12)O(40))].3H(2)O (1), [Cu(II)(4)(fcz)(4)(H(2)O)(4)(SiMo(12)O(40))].6H(2)O (2), [Cu(II)(2)(fcz)(2)][Cu(II)(4)(fcz)(4)(SiW(12)O(40))][Cu(II)(2)(fcz)(2)(H(2)O)(2)(SiW(12)O(40))].6H(2)O (3), (Et(3)NH)(2)[Cu(I)(2)(Hfcz)(2)(SiW(12)O(40))].2H(2)O (4), (Et(3)NH)(2)[Cu(I)(2)(Hfcz)(2)(SiW(12)O(40))].H(2)O (5) and [Cu(I)(4)(Hfcz)(4)(SiMo(12)O(40))] (6). Their structures have been determined by single-crystal X-ray diffraction analyses, and the compounds are further characterized by elemental analyses, IR spectra and thermogravimetric (TG) analyses. In 1, Cu(II) cations are bridged by fluconazole ligands to form a 3D lvt coordination polymeric network, which is connected by (SiW(12)O(40))(4-) anions to form a complicated 3D (4,6)-connected framework with the topology of (4(2).6(4))(4(6).6(7).8(2))(2). In 2, two fcz(-) anions chelate two Cu(2+) cations to form a [Cu(fcz)](2)(2+) dimer, which is bridged by (SiW(12)O(40))(4-) polyanions to generate a 2D (4,4) grid. Compound 3 is formed by three types of co-crystallizing subunits including a dimer [Cu(fcz)](2)(2+), a dumbbell molecule [Cu(4)(fcz)(4)(SiW(12)O(40))] and an infinite chain {[Cu(2)(fcz)(2)(H(2)O)(2)(SiW(12)O(40))](2-)}(infinity). In compounds 4 and 5, Hfcz ligands link Cu(+) cations to generate 1D coordination polymeric units, and (SiW(12)O(40))(4-) polyanions connect these metal-organic units to form two types of (6(3)) sheets which are topological isomerism. In compound 6, (SiMo(12)O(40))(4-) polyanions fixed in Cu(I)-Hfcz square rings are further extended into a 2D sheet via linking Cu(I) atoms of different rings. By carefully inspection of the structures of 1-6, it is believed that various transition-metal organic units and Keggin polyanions with different coordination modes are important for the formation of the different structures. In addition, electrochemical behaviors of compounds 1, 2, 5 and 6 have been investigated.  相似文献   

19.
Six supramolecular compounds constructed by main group and transition metals, polyoxotungstates (SiW(12)O(40)(4-)) and trans-N,N,N',N'-1,2-cyclohexanediaminotetraacetic acid (H(4)CyDTA), (NH(4))(3)[Ni(4)Na(H(2)O)(10)(CyDTA)(2)][SiW(12)O(40)]·10H(2)O (1) (NH(4))(2)[Cu(3)Na(2)(HCyDTA)(2)(H(2)O)(13)][SiW(12)O(40)]·5H(2)O (2), (NH(4))(2)[Zn(5)(CyDTA)(2)(H(2)O)(16)][SiW(12)O(40)]·8H(2)O (3), (NH(4))(4)[Cd(4)(CyDTA)(2)(H(2)O)(8)][SiW(12)O(40)]·6H(2)O (4), (NH(4))(4)[Sr(3)(HCyDTA)(2)(H(2)O)(14)][SiW(12)O(40)]·2H(2)O (5) and [Ca(4)(H(2)CyDTA)(2)(H(2)O)(22)][SiW(12)O(40)]·8H(2)O (6), were synthesized in aqueous solution and characterized by IR spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction techniques. Single-crystal structure analyses indicate they are constructed by the complexes with different nuclearity and polyoxometalates. In the sequence of Ni, Cu, Zn the nuclearity of the homometallic complex units increases from 2 to 5. Cadmium ions gives a tetranuclear complex with a compact structure. In 5 and 6 the main group metal ions and CyDTA form polymeric chains. CyDTA exhibits rather different coordination patterns to main group metal ions and transition metal ions due to their ionic radii and electronic configuration. The complex units and polyoxometalates arrange in different patterns due to the different shapes of the complex units. The compounds exhibit different thermal decomposition processes and the formation of compounds 3 and 4 quenches ligand-centered emissions and gives a ligand-to-metal emission. The study on various temperature susceptibilities of 1 and 2 shows that there is an antiferromagnetic coupling in the two compounds but coupling patterns are different.  相似文献   

20.
The microwave-mediated self-assembly of [W(V)(CN)(8)](3-) with Cu(II) in the presence of pyrazole ligand resulted in the formation of three novel assemblies: Cu(II)(2)(Hpyr)(5)(H(2)O)[W(V)(CN)(8)](NO(3))·H(2)O (1), {Cu(II)(5)(Hpyr)(18)[W(V)(CN)(8)](4)}·[Cu(II)(Hpyr)(4)(H(2)O)(2)]·9H(2)O (2), and Cu(II)(4)(Hpyr)(10)(H(2)O)[W(V)(CN)(8)](2)(HCOO)(2)·4.5H(2)O (3) (Hpyr =1H-pyrazole). Single-crystal X-ray structure of 1 consists of cyanido-bridged 1-D chains of vertex-sharing squares topology. The structure of 2 reveals 2-D hybrid inorganic layer topology with large coordination spaces occupied by {Cu(Hpyr)(2)(H(2)O)(4)}(2+) ions. Compound 3 contains two types of cyanido-bridged 1-D chains of vertex-sharing squares linked together by formate ions in two directions forming hybrid inorganic-organic 3-D framework (I(1)O(2)). The magnetic measurements for 1-3 reveal a weak ferromagnetic coupling through Cu(II)-NC-W(V) bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号