首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acid-functionalized tris-heteroleptic chromophore--donor--acceptor assembly [RuII(bpyCOOH)(bpyCH2PTZ)(bpyCH2MV2+)](PF6)4]4+ (1) (bpyCOOH = 4'-methyl-2,2'-bipyridine-4-carboxylic acid; bpyCH2PTZ = 10-((4'-methyl-2,2'-bipyridin-4-yl)methyl)phenothiazine; bpyCH2MV2+ = 1-((4'-methyl-2,2'-bipyridin-4-yl)methyl)-1'-methyl- 4,4'-bipyridinediium) was synthesized in a one-pot reaction by careful selection of the order of ligand addition to RuCl2(DMSO)4 (DMSO = dimethyl sulfoxide). The success of this method was based upon separation and isolation of 1 from mixtures containing ligand-scrambled products by cation exchange chromatography. Metal-to-ligand charge-transfer (MLCT) excitation in acetonitrile at 464 nm was followed by intramolecular electron transfer to give a redox-separated state [RuII(bpyCOOH)(bpyCH2PTZ.+)(bpyCH2MV.+)]4+ with an efficiency of eta RS = 0.35 +/- 0.05.  相似文献   

2.
The synthesis and analysis of a new amide-linked, dinuclear [Ru(bpy)(2)(bpy-ph-NH-CO-trpy)Ru(bpy)(OH(2))](4+) (bpy = 2,2'-bipyridine; bpy-ph-NH-CO-trpy = 4-(2,2':6',2"-terpyridin-4'-yl)-N-[(4'-methyl-2,2'-bipyridin-4-yl)methyl]benzamide) assembly that incorporates both a light-harvesting chromophore and a water oxidation catalyst are described. With the saturated methylene linker present, the individual properties of both the chromophore and catalyst are retained including water oxidation catalysis and relatively slow energy transfer from the chromophore excited state to the catalyst.  相似文献   

3.
Four new helical oligoproline assemblies containing 16, 17, 18, and 19 proline residues and ordered arrays of a Ru(II)-bipyridyl chromophore and a phenothiazine electron-transfer donor have been synthesized in a modular fashion by solid-phase peptide synthesis. These arrays are illustrated and abbreviated as CH(3)CO-Pro(6)-Pra(PTZ)-Pro(n)()-Pra(Ru(II)b(2)m)(2+)-Pro(6)-NH(2), where PTZ is 3-(10H-phenothiazine-10)propanoyl and (Ru(II)b'(2)m)(2+) is bis(4,4'-diethylamide-2,2'-bipyridine)(4-methyl,4'-carboxylate,2,2'-bipyridine)ruthenium(II) dication with n = 2 (2), 3 (3), 4 (4), and 5 (5). They contain PTZ as an electron-transfer donor and (Ru(II)b'(2)m)(2+) as a metal-to-ligand charge transfer (MLCT) light absorber and are separated by proline-to-proline through-space distances ranging from 0 (n = 2) to 12.9 A (n = 5) relative to the n = 2 case. They exist in the proline-II helix form in water, as shown by circular dichroism measurements. Following laser flash Ru(II) --> b'(2)m MLCT excitation at 460 nm in water, excited-state PTZ --> Ru(2+) quenching (k(2)) occurs by reductive electron transfer, followed by Ru(+) --> PTZ(+) back electron transfer (k(3)), as shown by transient absorption and emission measurements in water at 25 degrees C. Quenching with DeltaG degrees = -0.1 eV is an activated process, while back electron transfer occurs in the inverted region, DeltaG degrees = -1.8 eV, and is activationless, as shown by temperature dependence measurements. Coincidentally, both reactions have comparable distance dependences, with k(2)( )()varying from = 1.9 x 10(9) (n = 2) to 2.2 x 10(6) s(-)(1) (n = 4) and k(3) from approximately 2.0 x 10(9) (n = 2) to 2.2 x 10(6) s(-)(1) (n = 4). For both series there is a rate constant enhancement of approximately 10 for n = 5 compared to n = 4 and a linear decrease in ln k with the through-space separation distance, pointing to a significant and probably dominant through-space component to intrahelical electron transfer.  相似文献   

4.
The coordination compounds [Cu(bpy-MV2+)(PPh3)2](PF6)3, where bpy-MV2+ is the 1-(4-(4'-methyl-2,2'-bipyridin-4-yl)butyl)-1'-methyl-4, 4'-bipyridinediium(2+) cation, and [Cu(dmb)(PPh3)2](PF6), where dmb is 4,4'-dimethyl-2,2'-bipyridine, have been prepared and characterized. Visible light (417 nm) excitation of [Cu(bpy-MV2+)(PPh3)2]3+ at room temperature leads to rapid intramolecular electron transfer, kcs > 1 x 10(8) s-1, to form a charge-separated state with an electron localized on the pendant viologen group and a copper(II) metal center, abbreviated [CuII-bpy-MV.+]. This state recombines to ground-state products with first-order rate constants that can be tuned with solvent over a approximately 10(7)-10(5) s-1 range. The activation parameters were determined from temperature-dependent electron-transfer data with Arrhenius analysis. A model is proposed wherein a solvent molecule is coordinated to Cu(II) in the charge-separated state, [(S)CuII-bpy-MV.+]. Visible light excitation of [Cu(dmb)(PPh3)2](PF6) in argon-saturated dichloromethane produces long-lived photoluminescent excited states, tau = 80 ns, that are dynamically quenched by the addition of Lewis basic solvents. The measured quenching constants each correlate well with the lifetime of the charge-separated state measured after excitation of [Cu(bpy-MV2+)(PPh3)2]3+ in the corresponding solvent.  相似文献   

5.
Quenching of the 3MLCT excited state of [Ru(bpy)3]2+ (bpy=bipyridine) by the reduction products (MV*+ and MV0) of methyl viologen (MV2+) was studied by a combination of electrochemistry with laser flash photolysis or femtosecond pump-probe spectroscopy. Both for the bimolecular reactions and for the reactions in an Ru(bpy)3(2+)-MVn+ dyad, quenching by MV*+ and MV0 is reductive and gives the reduced ruthenium complex [Ru(bpy)3]+, in contrast to the oxidative quenching by MV2+. Rate constants of quenching (kq), and thermal charge recombination (krec) and cage escape yields (phi(ce)) were determined for the bimolecular reactions, and rates of forward (kf) and backward (kb) electron transfer in the dyad were measured for quenching by MV2+, MV*+, and MV0. The reactions in the dyad are very rapid, with values up to kf = 1.3 x 10(12) s(-1) for *Ru(bpy)3(2+)-MV*+. In addition, a long-lived (tau = 15 ps) vibrationally excited state of MV*+ with a characteristically structured absorption spectrum was detected; this was generated by direct excitation of the MV*+ moiety both at 460 and 600 nm. The results show that the direction of photoinduced electron transfer in a Ru(bpy)3-MV molecule can be switched by an externally applied bias.  相似文献   

6.
The syntheses, physical, and photophysical properties of a family of complexes having the general formula [M2(L)(mcb)(Ru(4,4'-(X)2-bpy)2)](PF6)3 (where M = Mn(II) or Zn(II), X = CH3 or CF3, mcb is 4'-methyl-4-carboxy-2,2'-bipyridine, and L is a Schiff base macrocycle derived from 2,6-diformyl-4-methylphenol and bis(2-aminoethyl)-N-methylamine) are described. The isostructural molecules all consist of dinuclear metal cores covalently linked to a Ru(II) polypyridyl complex. Photoexcitation of [Mn2(L)(mcb)(Ru((CF3)2-bpy)2)](PF6)3 (4) in deoxygenated CH2Cl2 solution results in emission characteristic of the 3MLCT excited state of the Ru(II) chromophore but with a lifetime (tau(obs) = 5.0 +/- 0.1 ns) and radiative quantum yield (Phi(r) approximately 7 x 10(-4)) that are significantly attenuated relative to the Zn(II) model complex [Zn2(L)(mcb)(Ru((CF3)2-bpy)2)](PF6)3 (6) (tau(obs) = 730 +/- 30 ns and Phi(r) = 0.024, respectively). Quenching of the 3MLCT excited state is even more extensive in the case of [Mn2(L)(mcb)(Ru((CH3)2-bpy)2)](PF6)3 (3), whose measured lifetime (tau(obs) = 45 +/- 5 ps) is >10(4) shorter than the corresponding model complex [Zn2(L)(mcb)(Ru((CH3)2-bpy)2)](PF6)3 (5) (tau(obs) = 1.31 +/- 0.05 micros). Time-resolved absorption measurements on both Mn-containing complexes at room-temperature revealed kinetics that were independent of probe wavelength; no spectroscopic signatures for electron-transfer photoproducts were observed. Time-resolved emission data for complex 4 acquired in CH2Cl2 solution over a range of 200-300 K could be fit to an expression of the form k(nr) = k0 + A x exp{-DeltaE/kB T} with k0 = 1.065 +/- 0.05 x 10(7) s(-1), A = 3.7 +/- 0.5 x 10(10) s(-1), and DeltaE = 1230 +/- 30 cm(-1). Assuming an electron-transfer mechanism, the variable-temperature data on complex 4 would require a reorganization energy of lambda approximately 0.4-0.5 eV which is too small to be associated with charge separation in this system. This result coupled with the lack of enhanced emission at temperatures below the glass-to-fluid transition of the solvent and the absence of visible absorption features associated with the Mn(II)2 core allows for a definitive assignment of Dexter transfer as the dominant excited-state reaction pathway. A similar conclusion was reached for complex 3 based in part on the smaller driving force for electron transfer (DeltaG0(ET) = -0.1 eV), the increase in probability of Dexter transfer due to the closer proximity of the donor excited state to the dimanganese acceptor, and a lack of emission from the compound upon formation of an optical glass at 80 K. Electronic coupling constants for Dexter transfer were determined to be approximately 10 cm(-1) and approximately 0.15 cm(-1) in complexes 3 and 4, respectively, indicating that the change in spatial localization of the excited state from the bridge (complex 3) to the periphery of the chromophore (complex 4) results in a decrease in electronic coupling to the dimanganese core of nearly 2 orders of magnitude. In addition to providing insight into the influence of donor/acceptor proximity on exchange energy transfer, this study underscores the utility of variable-temperature measurements in cases where Dexter and electron-transfer mechanisms can lead to indistinguishable spectroscopic observables.  相似文献   

7.
染料敏化光电化学电池(DSPECs)是构建人工光合作用体系的潜在方式,其优势在于可通过优化染料结构来拓展可见光吸收范围,从根本上提高太阳能利用效率.染料敏化光阳极在受激发产生电荷分离之后,激发电子注入TiO2半导体导带,由于其导带位置比传统的可见光半导体,如BiVO4和Fe3O4等相比较负,因此理论上可以在较小的偏压下取得较大的光电转换效率,也更有利于和光阴极相耦合实现无偏压分解水.电荷传输动力学研究表明,注入到TiO2导带的电子向氧化态光敏剂和催化剂的回传是造成体系能量损失的主要原因,集中体现在光电流密度和效率的降低.目前,已经报道了多种手段来减少DSPECs光阳极表面的电子回传,包括使用带有长烷基链的锚定基团对水氧化催化剂进行修饰,在半导体表面引入电子中介体以及使用核-壳结构的基底等.其中,SnO2/TiO2基底被广泛应用在染料敏化光阳极中,这种基底可以提高光生电子的注入效率,同时两种金属氧化物之间的异质结有效抑制了电子回传,从而提高了DSPECs的光电活性.然而,核-壳结构基底需要使用原子层沉积技术来制备,所以操作相对复杂.本文基于Ru-bda(bda=2,2'-联吡啶-6,6'-二羧酸)结构的分子水氧化催化剂和带有磷酸修饰基团的三联吡啶钌通过共吸附的方式制备染料敏化光阳极,在不使用核-壳结构基底的情况下,利用吡啶衍生物对TiO2电极表面的修饰来减少电子回传.本文利用一系列吡啶衍生物作修饰负载在TiO2光阳极上(TiO2|RuP,1;RuP=Ru(4,4'-(PO3H2)2-2,2'-联吡啶)(2,2'-联吡啶)2;1=Ru(bda)(L)2,bda=2,2'-联吡啶-6,6'-二羧酸,L=(10-吡啶-4-基氧基)癸基)膦酸.在100 mW/cm2的白光照射下(λ>400 nm),TiO2|RuP,1,P1(P1=4-羟基吡啶)光阳极在0.4 V(vs.NHE)的外加偏压下获得了1 mA/cm2的光电流密度,其光电流比未修饰吡啶的光阳极增加了42%.同时,其入射光子-电流转化效率在470 nm波长的单色光光照下达到最大,为13.6%.经过吡啶衍生物所修饰的光阳极光电性能和文献中利用核-壳结构基底所制备的类似光阳极性能相当,且光电流密度随吡啶对位取代基供电性能的增强而增大.瞬态吸收光谱和电化学阻抗谱测试表明,吡啶吸附在光阳极上能有效地抑制界面上的电子回传,延长电荷分离寿命,是光电流增加的根本原因,这也表明有机小分子修饰是提高染料敏化光阳极性能的简单、有效的策略.  相似文献   

8.
Host-guest chemistry and photoinduced electron-transfer processes have been studied in the systems containing Ru(bpy)3 complex covalently linked to viologen as a guest molecule and cucurbit[n]urils (n = 7, 8) as host molecules in aqueous solution. The Ru(bpy)3-viologen complex, [Ru(2,2'-bipyridine)2(4-(4-(1'-methyl-4,4'-bipyridinediium-1-yl)butyl)-4'-methyl-2,2'-bipyridine)]Cl4 (denoted as Ru2+-MV2+, 1) was shown to form stable 1:1 inclusion complexes with cucurbit[7]uril (CB[7]) and cucurbit[8]uril (CB[8]). The binding modes are slightly different with CB[7] and CB[8]. CB[7] preferentially binds to part of the viologen residue in 1 together with the butyl chain, whereas CB[8] preferentially encloses the whole viologen residue. Photoinduced intramolecular electron transfer from the excited-state of the Ru moiety to MV2(+) which is inserted into the cavity of the CBs occurred. Long-lived charge-separated states Ru3(+)-MV(+*) were generated with the lifetimes of 280 ns with CB[7] and 2060 ns with CB[8]. This shows that CBs can slow down the charge recombination within supramolecular systems, and the difference in lifetimes seems to be due to the difference in binding modes. In the presence of a sacrificial electron donor triethanolamine, light-driven formation of a dimer of MV(+*) inside the CB[8] cavity was observed. This "locked" molecular dimer can be "unlocked" by molecular oxygen to give back the original form of the molecular dyad 1 with the MV2(+) moiety inserted in the cavity of CB[8]. The processes could be repeated several times and showed nice reversibility.  相似文献   

9.
The synthesis and electronic properties of dinuclear ([(bipy)2Ru(I)M(terpy)][PF6]4(bipy = 2,2'-bipyridine, terpy = 2,2':6',2'-terpyridine; M = Ru, Os)) and trinuclear ([[(bipy)2Ru(I)]2M][PF6]6 M = Ru, Os, Fe, Co) complexes bridged by 4'-(2,2'-bipyridin-4-yl)-2,2':6',2'-terpyridine (I) have been investigated and are compared with those of mononuclear model complexes. The electrochemical analysis using cyclic voltammetry and differential pulse voltammetry reveals that there are no interactions in the ground state between adjacent metal centres. However, there is strong electronic communication between the 2,2'-bipyridine and 2,2':6',2'-terpyridine components of the bridging ligand. This conclusion is supported by a step-by-step reduction of the dinuclear and trinuclear complexes and the assignment of each electrochemical process to localised ligand sites within the didentate and terdentate domains. The investigation of the electronic absorption and emission spectra reveals an energy transfer in the excited state from the terminating bipy-bound metal centres to the central terpy-bound metal centre. This indicates that the bridge is able to facilitate energy transfer in the excited state between the metal centres despite the lack of interactions in the ground state.  相似文献   

10.
Kim Y  Lee H  Dutta PK  Das A 《Inorganic chemistry》2003,42(13):4215-4222
Employing the strategy of quaternization of the 2,2' N atoms of the conjugated bipyridine ligand 1,4-bis[2-(4'-methyl-2,2'-bipyrid-4-yl)ethenyl]benzene (L), a polypyridyl complex of ruthenium(II) was tethered on the surface of zeolite Y. Electrochemical and spectroscopic properties of the complex suggest that, upon visible photoexcitation of the MLCT band, the electron is localized on the conjugated ligand rather than the bipyridines. Electron transfer from the surface complex to bipyridinium ions (methyl viologen) within the zeolite was observed. Visible light photolysis of the ruthenium-zeolite solid ion-exchanged with diquat and suspended in a propyl viologen sulfonate solution led to permanent formation of the blue propyl viologen sulfonate radical ion in solution. The model that is proposed involves intrazeolitic charge transfer to ion-exchanged diquat followed by interfacial (zeolite to solution) electron transfer to propyl viologen sulfonate in solution. Because of the slow intramolecular back-electron-transfer reaction and the forward electron propagation via the ion-exchanged diquat, Ru(III) is formed. This Ru(III) complex formed on the zeolite is proposed to react rapidly with water in the presence of light, followed by reaction with the propyl viologen sulfonate, to form pyridones and regeneration of Ru(II), which then continues the photochemical process.  相似文献   

11.
Two Ru(II) complexes, [Ru(bpy)2L](ClO4)2 (1) and [Ru(bpy)2L'](BF4)2 (2), where bpy is 2,2'-bipyridine, L is diacetyl dihydrazone, and L' 1:2 is the condensate of L and acetone, are synthesized. From X-ray crystal structures, both are found to contain distorted octahedral RuN(6)(2+) cores. NMR spectra show that the cations in 1 and 2 possess a C2 axis in solution. They display the expected metal-to-ligand charge transfer (1MLCT) band in the 400-500 nm region. Complex 1 is nonemissive at room temperature in solution as well as at 80 K. In contrast, complex 2 gives rise to an appreciable emission upon excitation at 440 nm. The room-temperature emission is centered at 730 nm (lambda(em)(max)) with a quantum yield (Phi(em)) of 0.002 and a lifetime (tau(em)) of 42 ns in an air-equilibrated methanol-ethanol solution. At 80 K, Phi(em) = 0.007 and tau(em) = 178 ns, with a lambda(em)(max) of 690 nm, which is close to the 0-0 transition, indicating an 3MLCT excited-state energy of 1.80 eV. The radiative rate constant (5 x 10(4) s(-1)) at room temperature and 80 K is almost temperature independent. From spectroelectrochemistry, it is found that bpy is easiest to reduce in 2 and that L is easiest in 1. The implications of this are that in 2 the lowest (3)MLCT state is localized on a bpy ligand and in 1 it is localized on L. Transient absorption results also support these assignments. As a consequence, even though 2 shows a fairly strong and long-lived emission from a Ru(II) --> bpy CT state, the Ru(II) --> L CT state in 1 shows no detectable emission even at 80 K.  相似文献   

12.
The paper examines the supramolecular effects at play during photosensitization by carboxylated Ru(II) sensitizers, both by experiment and by modeling. Experimentally, twelve Ru(II) complexes of pyrazolylpyridine and polypyridine ligands, including two benchmark complexes and two new species, were assessed as photosensitizers by measurement of the kinetics of methyl viologen cation radical (MV(*)(+)) generation through an oxidative, photoinduced electron transfer (PET) to methyl viologen (MV(2+)) under continuous irradiation in the presence of a sacrificial reductant. All complexes, luminescent or not, produced measurable amounts of MV(*)(+) in CH(3)CN. The assessment protocol was found to be useful with sensitizers of widely varying excited-state lifetimes (tau) as well as being easier and faster than conventional approaches. The seven sensitizers bearing peripheral COOH groups were found to be significantly more active than their non-carboxylated analogues, which is consistent with ionization of the COOH groups and electrostatic promotion of PET. Only the luminescent complexes were active in aqueous solvents, where tau appears to be the dominant effector. The benefits are exemplified by the singly carboxylated [Ru(H1)(bpy)(2)](2+) (H1 is 1-(4-carboxyphenyl)-3-(2-pyridyl)-4,5,6,7-tetrahydroindazole), a weakly luminescent sensitizer that was less active in aqueous solvents than [Ru(bpy)(3)](2+) (bpy is 2,2'-bipyridine), but which became the better sensitizer in CH(3)CN. Computationally, electrostatic field and dissociation energy calculations demonstrated that even a single peripheral COO(-) substituent suffices to provide supramolecular assistance: it defines a spheric "bubble" of electrostatically attractive space that is sufficiently large to allow the supramolecular preassociation of MV(2+), which provides an entropic advantage to PET that reduces the importance of tau in organic solvent. Calculations also show that the PET is electrostatically favored over its reverse (BET) even with cationic sensitizers because the "bubble" contracts after PET while the bulk medium becomes more repulsive, and favorable cation exchanges can occur to effect post-PET dissociation. Two peripheral COO(-) groups can define a two-point binding site for MV(2+) in an attractive sector of space that contracts to a kidney-shaped "bubble" after PET. This enables unimolecular PET while the reverse reaction remains bimolecular. The resultant benefits are illustrated with [Ru(Na1)(2)(bpy)](2+), a very weakly luminescent sensitizer that was totally inactive in H(2)O but appreciably active in CH(3)CN, despite the need to displace Na(+) in order to derive any electrostatic benefit. The Marcus free energies of activation for PET and BET corroborate the benefits of carboxylation, solvent, and other factors and correlated with the experimental rate constants.  相似文献   

13.
The redox behaviour, optical-absorption spectra and emission properties of U-shaped and elongated disubstituted biisoquinoline ligands and of derived octahedral Fe(ii), Ru(ii), and Re(i) complexes are reported. The ligands are 8,8'-dichloro-3,3'-biisoquinoline (1), 8,8'-dianisyl-3,3'-biisoquinoline (2), and 8,8'-di(phenylanisyl)-3,3'-biisoquinoline (3), and the complexes are [Fe(3)(3)](2+), [Fe(2)(3)](2+), [Ru(1)(phen)(2)](2+), [Ru(2)(3)](2+), [Ru(3)(3)](2+), [Re(2)(py)(CO)(3)](+), and [Re()(py)(CO)(3)](+). For the ligands, the optical properties as observed in dichloromethane are in line with expectations based on the predominant (1)pipi* nature of the involved excited states, with contributions at lower energies from (1)npi* and (1)ILCT (intraligand charge transfer) transitions. For all of the Fe(ii), Ru(ii), and Re(i) complexes, studied in acetonitrile, the transitions associated with the lowest-energy absorption band are of (1)MLCT (metal-to-ligand charge transfer) nature. The emission properties, as observed at room temperature and at 77 K, can be described as follows: (i) the Fe(ii) complexes do not emit, either at room temperature or at 77 K; (ii) the room-temperature emission of the Ru(ii) complexes (phi(em) > 10(-3), tau in the micros range) is of mixed (3)MLCT/(3)LC character (and similarly at 77 K); and (iii) the room-temperature emission of the Re(i) complexes (phi(em) approximately 3 x 10(-3), tau < 1 ns) is of (3)MLCT character and becomes of (3)LC (ligand-centered) character (tau in the ms time scale) at 77 K. The interplay of the involved excited states in determining the luminescence output is examined.  相似文献   

14.
Synthesis, ground-, and excited-state properties are reported for two new electron donor-bridge-acceptor (D-B-A) molecules and two new photophysical model complexes. The D-B-A molecules are [Ru(bpy)2(bpy-phi-MV)](PF6)4 (3) and [Ru(tmb)2(bpy-phi-MV)](PF6)4 (4), where bpy is 2,2'-bipyridine, tmb is 4,4',5,5'-tetramethyl-2,2'-bipyridine, MV is methyl viologen, and phi is a phenylene spacer. Their model complexes are [Ru(bpy)2(p-tol-bpy)](PF6)2 (1) and [Ru(tmb)2(p-tol-bpy)](PF6)2 (2), where p-tolyl-bpy is 4-(p-tolyl)-2,2'-bipyridine. Photophysical characterization of 1 and 2 indicates that 2.17 eV and 2.12 eV are stored in their respective (3)MLCT (metal-to-ligand charge transfer) excited state. These values along with electrochemical measurements show that photoinduced electron transfer (D*-B-A-->D (+)-B-A(-)) is favorable in 3 and 4 with DeltaG degrees(ET)=-0.52 eV and -0.62 eV, respectively. The driving force for the reverse process (D(+)-B-A(-) --> D-B-A) is also reported: DeltaG degrees(BET)=-1.7 eV for 3 and -1.5 eV for 4. Transient absorption (TA) spectra for 3 and 4 in 298 K acetonitrile provide evidence that reduced methyl viologen is observable at 50 ps following excitation. Detailed TA kinetics confirm this, and the data are fit to a model to determine both forward (k(ET)) and back (k(BET)) electron transfer rate constants: k(ET)=2.6 x 10(10) s(-1) for 3 and 2.8 x 10(10) s(-1) for 4; k(BET)=0.62 x 10(10) s(-1) for 3 and 1.37 x 10(10) s(-1) for 4. The similar rate constants k ET for 3 and 4 despite a 100 meV driving force (DeltaG degrees(ET)) increase suggests that forward electron transfer in these molecules in room temperature acetonitrile is nearly barrierless as predicted by the Marcus theory. The reduction in electron transfer reorganization energy necessary for this barrierless reactivity is attributed to excited-state electron delocalization in the (3)MLCT excited states of 3 and 4, an effect that is made possible by excited-state conformational changes in the aryl-substituted ligands of these complexes.  相似文献   

15.
He B  Wenger OS 《Inorganic chemistry》2012,51(7):4335-4342
A molecular ensemble composed of a phenothiazine (PTZ) electron donor, a photoisomerizable dithienylethene (DTE) bridge, and a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) electron acceptor was synthesized and investigated by optical spectroscopic and electrochemical means. Our initial intention was to perform flash-quench transient absorption studies in which the Ru(bpy)(3)(2+) unit is excited selectively ("flash") and its (3)MLCT excited state is quenched oxidatively ("quench") by excess methylviologen prior to intramolecular electron transfer from phenothiazine to Ru(III) across the dithienylethene bridge. However, after selective Ru(bpy)(3)(2+1)MLCT excitation of the dyad with the DTE bridge in its open form, (1)MLCT → (3)MLCT intersystem crossing on the metal complex is followed by triplet-triplet energy transfer to a (3)π-π* state localized on the DTE unit. This energy transfer process is faster than bimolecular oxidative quenching with methylviologen at the ruthenium site (Ru(III) is not observed); only the triplet-excited DTE then undergoes rapid (10 ns, instrumentally limited) bimolecular electron transfer with methylviologen. Subsequently, there is intramolecular electron transfer with PTZ. The time constant for formation of the phenothiazine radical cation via intramolecular electron transfer occurring over two p-xylene units is 41 ns. When the DTE bridge is photoisomerized to the closed form, PTZ(+) cannot be observed any more. Irrespective of the wavelength at which the closed isomer is irradiated, most of the excitation energy appears to be funneled rapidly into a DTE-localized singlet excited state from which photoisomerization to the open form occurs within picoseconds.  相似文献   

16.
We report the successful use of Ru(II)(terpy)(2) (1, terpy = 2,2':6',2'-terpyridine) as a catalyst in the Belousov-Zhabotinsky (BZ) oscillating chemical reaction. We also examine several additional Ru(II) complexes, Ru(II)(bipy)(2)(L')(2) (2, L' = 4-pyridinecarboxylic acid; bipy = 2,2'-bipyridine) and Ru(II)(bipy)(2)(L') (3, L' = 4,4'-dicarboxy-2,2'-bipy; 4, L' = N-allyl-4'-methyl-[2,2'-bipy]-4-carboxamide; 5, L' = bipy), for catalyzing the BZ reaction. While 2 is unable to trigger BZ oscillations, probably because of the rapid loss of L' in a BZ solution, the other bipyridine-based Ru(II)-complexes can catalyze the BZ reaction, although their catalytic activity is adversely affected by slow ligand substitution in a BZ solution. Nevertheless, the successfully tested Ru(II)(terpy)(2) and Ru(II)(bipy)(2)(L') catalysts may provide useful building blocks for complex functional macromolecules.  相似文献   

17.
A sample of novel delaminated zeolite ITQ-2 containing Ru(bpy)3(2+) on the external cups and MV2+ included in the independent and not connected channels has been prepared; emission and time-resolved laser flash photolysis has shown unambigously that photoinduced electron transfer from Ru(bpy)3(2+) to MV2+ occurs through the zeolite framework.  相似文献   

18.
A series of four asymmetrically aryl-substituted 9,9'-spiro-9-silabifluorene (SSF) derivatives, 2,2'-di-tert-butyl-7,7'-diphenyl-9,9'-spiro-9-silabifluorene (PhSSF), 2,2'-di-tert-butyl-7,7'-dipyridin-2-yl-9,9'-spiro-9-silabifluorene (PySSF), 2,2'-di-tert-butyl-7,7'-dibiphenyl-4-yl-9,9'-spiro-9-silabifluorene (BPhSSF), and 2,2'-di-tert-butyl-7,7'-bis(2',2' '-bipyridin-6-yl)-9,9'-spiro-9-silabifluorene (BPySSF) are prepared through the cyclization of the corresponding 2,2'-dilithiobiphenyls with silicon tetrachloride. These novel spiro-linked silacyclopentadienes (siloles) form transparent and stable amorphous films with relatively high glass transition temperatures (T(g) = 203-228 degrees C). The absorbance spectrum of each compound shows a significant bathochromic shift relative to that of the corresponding carbon analogue as a result of the effective sigma-pi conjugation between the sigma orbital of the exocyclic Si-C bond and the pi orbital of the oligoarylene fragment. Solid-state films exhibit intense violet-blue emission (lambda(PL) = 398-415 nm) with high absolute photoluminescence quantum yields (phi(PL) = 30-55%).  相似文献   

19.
The compound Ru(bpy)2(dppz-R)(PF6)2, where bpy is 2,2'-bipyridine and dppz-R is 11-(diethoxyphosphorylmethyl)dipyrido[3,2-a:2',3'-c]phenazine, was prepared and anchored to mesoporous nanocrystalline (anatase) TiO2 thin films as a probe of the effects of interfacial water on excited-state charge transfer processes at semiconductor interfaces. In nitrogen-saturated fluid acetonitrile, the Ru(bpy)2(dppz-R)(PF6)2 compound was found to be highly photoluminescent. Water was found to quench the excited state by a mechanism adequately described by the Perrin model, from which the radius of quenching was abstracted, 75 +/- 2 A. The Ru(bpy)2(dppz-R)(PF6)2 compounds were found to bind to the TiO2 thin films in high surface coverages, 5 x 10(-8) mol cm(-2). When these films were immersed in acetonitrile, long-lived excited states (tau = 825 ns) that were quenched by the addition of water were observed. About 30% of the excited states could not be quenched by water. Efficient electron injection, phi(inj) = 0.8, was observed after light excitation of Ru(bpy)2(dppz-R)/TiO2 in a 0.1 M LiClO4/acetonitrile solution. The addition of large concentrations of water, >0.5 M, was found to decrease the injection yield to phi(inj) = 0.3.  相似文献   

20.
Nanocrystalline (anatase), mesoporous TiO2 thin films were functionalized with [Ru(bpy)2(deebq)](PF6)2, [Ru(bq)2(deeb)](PF6)2, [Ru(deebq)2(bpy)](PF6)2, [Ru(bpy)(deebq)(NCS)2], or [Os(bpy)2(deebq)](PF6)2, where bpy is 2,2'-bipyridine, bq is 2,2'-biquinoline, and deeb and deebq are 4,4'-diethylester derivatives. These compounds bind to the nanocrystalline TiO2 films in their carboxylate forms with limiting surface coverages of 8 (+/- 2) x 10(-8) mol/cm2. Electrochemical measurements show that the first reduction of these compounds (-0.70 V vs SCE) occurs prior to TiO2 reduction. Steady state illumination in the presence of the sacrificial electron donor triethylamine leads to the appearance of the reduced sensitizer. The thermally equilibrated metal-to-ligand charge-transfer excited state and the reduced form of these compounds do not inject electrons into TiO2. Nanosecond transient absorption measurements demonstrate the formation of an extremely long-lived charge separated state based on equal concentrations of the reduced and oxidized compounds. The results are consistent with a mechanism of ultrafast excited-state injection into TiO2 followed by interfacial electron transfer to a ground-state compound. The quantum yield for this process was found to increase with excitation energy, a behavior attributed to stronger overlap between the excited sensitizer and the semiconductor acceptor states. For example, the quantum yields for [Os(bpy)2(dcbq)]/TiO2 were phi(417 nm) = 0.18 +/- 0.02, phi(532.5 nm) = 0.08 +/- 0.02, and phi(683 nm) = 0.05 +/- 0.01. Electron transfer to yield ground-state products occurs by lateral intermolecular charge transfer. The driving force for charge recombination was in excess of that stored in the photoluminescent excited state. Chronoabsorption measurements indicate that ligand-based intermolecular electron transfer was an order of magnitude faster than metal-centered intermolecular hole transfer. Charge recombination was quantified with the Kohlrausch-Williams-Watts model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号