首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Raman spectra have been measured for ZnCl2---ZnX2 and ZnCl2---KX (X = Br, I) glasses to investigate the structure of the glasses with varying composition. The assignment of each band was made, and the change of the spectra with composition was explained in terms of the bridging and non-bridging states of halide ions and the change of the tetrahedral units, ZnXnCl4−n2− (n = 0–4), formed in the glasses. As the content of ZnX2 in ZnCl2---ZnX2 glasses increases (20 → 80 mol%), the peak frequency of the Zn---Cl stretching mode increases (238 → 248 cm−1 in X = I glasses, 238 → 259 cm−1 in X = Br glasses) while the Zn---I and Zn---Br stretching frequencies decrease (173 → 120 cm−1 for Zn---I, 196 → 157 cm−1 for Zn---Br). The decrease of the Zn---I and Zn---Br band frequencies was attributed to the increase of the number n of the ZnXnCl4−n2− tetrahedra. The increase of the Zn---Cl frequency suggests the existence of the bonding state of Cl ions which is intermediate between the bridging and the non-bridging states. In ZnCl2---KX glasses, the Zn---Clnon-bridging band at about 300 cm−1 was observed in addition to the bands observed in ZnCl2---ZnX2 glasses. The addition of KX produces non-bridging anions while the tetrahedral units, ZnXnCl4−n2− are also formed.  相似文献   

2.
Measurements of the pressure dependence of the static dielectric constant of tellurite (pure TeO2 and 67%TeO2 + 33%WO3) and samarium phosphate (5%Sm2O3 + 95%P2O5 and 15%Sm2O3 + 85%P2O5) glasses at elevated pressures (0–70 kbar) for a range of temperatures (77–380 K) are reported. The electrical properties under pressure have been determined from the low-frequency complex plane analysis of glass discs contained within a Bridgman opposed anvil cell. The most notable observation is that the pressure dependence of the static dielectric constant, of all glasses studied, is positive, for example for vitreous TeO2 ln ε/P is equal to 4.41 × 10−11 (Pa−1) at 293 K. Behaviour of this type is common to a number of materials (plastics and chalcogenide glasses) for which it is not possible to define any long-range order. It is in direct contrast with the behaviour of crystalline insulators, for which ε/P is usually negative. The effect of pressure on the dielectric constant has been analysed using two different approaches based on the macroscopic Clausius-Mossotti equation. The effects of high pressure on the dielectric constant have been correlated with the temperature dependence of the dielectric constant at atmospheric pressure.  相似文献   

3.
Hu Hefang  J.D. Mackenzie   《Journal of Non》1986,80(1-3):495-502
The effect of oxide impurity on the physical properties of 62ZrF4---8LaF3---30BaF2 (mol.%) glass was studied by equimolecular substitution of BaO for BaF2. It is shown that the oxide impurity decreases the infrared transparency beyond 6 μm, shifts the transmission cut-off wavelength to higher frequencies and causes an additional absorption shoulder at 1350 cm−1. The oxide impurity also increases the glass transition temperature, the crystallization temperature and the viscosity of the melt. The additional infrared absorption of oxide impurity in the fluorozirconate glasses results from the multiphonon process of the vibration of F---Zr---O bonds at 680 cm−1.  相似文献   

4.
The characteristic A1 peak at 199 cm−1 in the Raman spectrum of amorphous GeSe2 were compared with the peaks at 211 and 216 cm−1 in the spectrum of crystalline GeSe2. It was proved that the crystalline 216 cm−1 peak is an intrinsic mode which is enhanced by the bulk exciton transition. From a model calculation using a valence force field and bond polarizability, the 211 cm−1 peak was assigned to in-phase breathing vibrations extended along the GeSe4 tetrahedral chain structure, while the 216 cm−1 peak was attributed to in-phase breathing vibrations quasi-localized at the GeSe4 edge-sharing tetrahedra. The phonon density of states in the crystal has a doublet peak similar to the amorphous Raman spectrum. A correspondence between the amorphous and the crystalline Raman spectra was proposed.  相似文献   

5.
Thermally stimulated luminescence (TSL) and infrared (IR) spectroscopy were measured in plasma grown Si1−xGexO2 (x=0, 0.08, 0.15, 0.25, 0.5) with different thicknesses (12–40 nm). A comparison with the TSL properties of thermally grown SiO2 and GeO2 was also performed. A main IR absorption structure was detected, due to the superposition of the peaks related to the asymmetric O stretching modes of (i) Si–O–Si (at ≈1060 cm−1) and (ii) Si–O–Ge (at 1001 cm−1). Another peak at ≈860 cm−1 was observed only for Ge concentrations, x>0.15, corresponding to the asymmetric O stretching mode in Ge–O–Ge bonds. A TSL peak was observed at 70°C, and a smaller structure at around 200°C. The 70°C peak was more intense in all Ge rich layers than in plasma grown SiO2. Based on the thickness dependence of the signal intensity we propose that at Ge concentrations 0.25x0.5 TSL active defects are localised at interfacial regions (oxide/semiconductor, Ge poor/Ge rich internal interface, oxide external surface/atmosphere). Based on similarities between TSL glow curves in plasma grown Si1−xGexO2, thermally grown GeO2 and SiO2 we propose that oxygen vacancy related defects are trapping states in Si1−xGexO2 and GeO2.  相似文献   

6.
We report the infrared and Raman studies of titanium doped vitreous silica glasses for a number of titanium concentrations. The vibrational modes associated with the randomly oriented chains of SiO4 tetrahedra show broadenings and shifts. The LO-TO splitting of some Raman active modes decreases with increasing titanium concentration. This is attributed to the decrease in long-range coulomb fields associated with the chains of SiO4 tetrahedra which are broken by the titanium atoms. The results are discussed in the context of random network models. An increase in the average intertetrahedral angle of the SiO4 network is calculated from the data. This explains the anomalous decrease in the density of TiO2---SiO2 glasses with increasing titanium content. We identify two new modes associated with the distorted titanium tetrahedra. A polarized Raman mode at 1115 cm−1 which is infrared inactive and an unpolarized Raman mode at 945 cm−1 which is infrared active are observed.  相似文献   

7.
J.W Park  Haydn Chen 《Journal of Non》1980,40(1-3):515-525
The infrared absorption spectra of sodium-disilicate glasses containing various amounts of Fe2O3 ([Na2O · 2 SiO2]1−x [Fe2O3]x, where X = 0.05, 0.1 and 0.2) were investigated in the wavenumber range from 200–2000 cm−1. The addition of Fe2O3 to the sodium-disilicate glass does not seem to introduce any new absorption band as compared with the spectrum of a pure sodium-disilicate glass; nevertheless, a general shift of the existing absorption bands toward lower wavenumbers is observed. The amount of shift is, in fact, proportional to the content of Fe2O3 in the glass. This observation is consistent with the recently proposed structural model for the bonding of Fe3+ ions in the iron-sodium-silicate glass system.

Annealing of 20 mol% iron oxide glasses at 550 and 580°C produced an extra sharp infrared absorption peak at about 610 cm−1 wavenumber. This new peak is believed to be related to the crystallized particles of the glass as concluded from both a scanning electron micrograph and an electron diffraction pattern.  相似文献   


8.
Tellurium oxide glasses were prepared by the hammer and anvil technique. The glass systems are (0.85TeO2 + 0.15Z), where Z = K2O, TiO2, V2O5, MnO, Fe2O3, CoO, NiO or CuO. A second group is a ternary system 0.85TeO2+(0.15 − x)TiO2 + xFe2O3) with x=0.0, 0.05, 0.1, 0.15 mol. X-ray diffraction, infrared spectroscopy and differential thermal analysis measurements were carried out. The present study showed the different glass-forming groups, the glass transition and crystallization temperatures as well as the crystallization processes.  相似文献   

9.
This paper reports the polarized Raman spectra of three forms of vitreous GeO2: the pure glass, neutron irradiated pure glass and unirradiated Ge-rich glass of composition Ge1.1O2. The data reveals that the line seen at 520 cm−1 in the pure glass is due to a network defect that is not a Ge---Ge bond and very probably also not an O---O bond. Comparison with spectra of fused silica suggests that the 606 cm−1 defect line seen in v-SiO2 is not due to Si---Si or O---O bonds.  相似文献   

10.
A comparative study of low-temperature specific heat (1.5–25 K), Cp, and low-frequency Raman scattering (<150 cm−1) has been performed in amorphous silica samples synthesized by sol–gel method (xerogels) and thermally densified in a range of densities, from ρ=1250 kgm−3 to ρ=2100 kgm−3, close to the density of the melt quenched vitreous silica (v-SiO2). The present analysis concerns the application of the low-energy vibrational dynamics as an appropriate tool for monitoring the progressive thermal densification of silica gels. By comparison with v-SiO2, the Raman and thermal properties of xerogels with increasing thermal treatment temperature revealed the following important results: (i) the existence of a critical treatment temperature at about 870°C, where a homogeneous viscous sintering produces full densification of the samples. This effect is detected by the observations of the Boson peak in Raman spectra at about 45 cm−1 and of a peak in Cp(T)/T3, very close to those observed in v-SiO2; (ii) in silica xerogels treated at temperatures less than about 800°C, the low-frequency Raman scattering is greater, with a continuous decreasing unstructured shape, and the Boson peak is not detected in the spectra.  相似文献   

11.
The electrical conductivities of (1−x) Li2O · x BaO · 2 SiO2, (1−x) Na2O · x MgO ·2 SiO2, (1−x) Na2O · x CaO · SiO2 and (1−x) Na2O · x BaO · 2SiO2 glasses were measured at temperature ranging from room temperature to 450°C. The transport numbers for Na+ ion in (1−x) Na2O · x BaO · 2 SiO2 glasses were measured. It was found that the alkali ion carried a significant part of the current in these glasses except one that had no alkali ions, and the conductivity decreased markedly as the alkali oxide was substituted by an alkaline earth oxide. The results of conductivity measurements combined with the data hitherto reported on mixed alkali glasses led to the proposal that the so-called mixed alkali effect could be explained on the basis of the independent path model in which it is assumed that cations can move only through vacant sites left by those of the same type.  相似文献   

12.
The 11B, 27Al, 29Si and 31P magic angle spinning (MAS) NMR spectra of MO–P2O5, MO–SiO2–P2O5 and MO(M2O)–SiO2–Al2O3–B2O3 (M=Mg, Ca, Sr and Ba, M=Na) glasses were examined. In binary MO–P2O5 (M=Ca and Mg) glasses, the distributions of the phosphate sites, P(Qn), can be expressed by a theoretical prediction that P2O5 reacts quantitatively with MO. In the ternary 0.30MO–0.05SiO2–0.65P2O5 glasses, the 6-coordinated silicon sites were detected, whose population increases in the order of MgOxCaO–0.05SiO2–(0.95−x)P2O5 glasses, its population increases with an increase in f (=([P2O5]−[MO]−[B2O3]−[Na2O])/[SiO2]) and has maximum at f=9. The signal due to the 5-coordinated silicon atoms is also observed when x is smaller than 0.45. When three network-forming oxides such as SiO2, Al2O3 and B2O3 coexist, Al2O3 reacts preferably with MO. The populations of 4-coordinated boron atoms, N4, are expressed well with r/(1−r), where r=([Na2O]−[Al2O3])/([Na2O]−[Al2O3]+[B2O3]). The correlation of the Raman signal at 1210 and 1350 cm−1 with the NMR signal of Si(Q6) at −215 ppm is also seen.  相似文献   

13.
We have grown layers of Ga1−xInxAs:C (x ≈ 0.01) on (100) GaAs by molecular beam epitaxy. As C source a graphite filament was used. Structures coherent with the substrate were obtained by adjusting properly the In and C concentrations. With simultaneous incorporation of In and C the strain is compensated and, consequently, the defect density is reduced. A maximum hole concentration value of p = 6×1019 cm−3 was achieved, which is twice higher than the saturation value of C doping of GaAs produced under the same conditions. There is evidence that this value is not in the saturation limit. The product of the hole density times the mobility increases, so the resistance decreases with higher C doping. Raman spectra show that the CAs peak broadens and shifts to lower frequencies for increasing concentration of indium. In H-passivated samples, Raman spectroscopy shows that CAs is surrounded by Ga atoms only. Indium atoms are thus present only in the second group III shell.  相似文献   

14.
New multicomponent PbF2–InF3–GaF3 bulk glasses have been investigated. They show lower phonon energy (540 cm−1) in comparison with 580 cm−1 for ZBLAN. Large PbF2 concentration provided glasses with high refractive index up to 1.582 and the viscosity curves revealed an excellent thermal compatibility with ZBLAYN glass. A multimode fiber with a numerical aperture of 0.51, a loss of 0.85 dB/m at 1.3 μm was fabricated using the rotational casting method.  相似文献   

15.
The reflectance spectra of ion implanted SiO2 glasses has been measured from 5000 cm−1 to 400 cm−1. The silica was implanted with Ti, Cr, Mn, Fe, Cu and Bi to nominal doses ranging from 1×1015 ions/cm2 to 1.2×1017 ions/cm2 at an energy of 160 keV and currents of approximately 2.6 μA/cm2. Changes in the intensity of the 1232 cm−1 and 1015 cm−1 vibrational modes are attributed to changes in the intermediate range order (IRO) and to changes in the concentration of non-bridging oxygen (NBO) defects in the implanted layer. These changes are ion and dose dependent. The differing effects on IRO and NBO are attributed to the chemical interaction of the implanted ions with the substrate.  相似文献   

16.
Heavily carbon-doped p-type InxGa1−xAs (0≤x<0.49) was successfully grown by gas-source molecular beam epitaxy using diiodomethane (CH2I2), triethylindium (TEIn), triethylgallium (TEGa) and AsH3. Hole concentrations as high as 2.1×1020 cm−3 were achieved in GaAs at an electrical activation efficiency of 100%. For InxGa1−xAs, both the hole and the atomic carbon concentrations gradually decreased as the InAs mole fraction, x, increased from 0.41 to 0.49. Hole concentrations of 5.1×1018 and 1.5×1019 cm−3 for x = 0.49 and x = 0.41, respectively, were obtained by a preliminary experiment. After post-growth annealing (500°C, 5 min under As4 pressure), the hole concentration increased to 6.2×1018 cm−3 for x = 0.49, probably due to the activation of hydrogen-passivated carbon accepters.  相似文献   

17.
Vitreous BeF2 was prepared by two techniques; (1) remelting of a technical grade material, and (2) vacuum distillation/fluoridation. Infrared spectroscopy studies have established that the first material contains about 0.5 wt.% hydroxyl, predicted to be coherently incorporated into the vitreous network as edge-linked [Be(OH)4]2− units. The distilled BeF2 is water-free. The dc electrical conductivity of the remelted BeF2 was measured as σ = (7.9 × 103/T) exp(−24500 cal/mol/RT) ω−1 cm−1 and for the distilled BeF2 as σ = (3.0 × 105/T) exp(−36700 cal/mol/RT ω−1 cm−1 at temperatures to 280°C. Ionic transport studies utilizing a dc electrolysis polarization technique with N2−F2 and H2−HF gas electrodes have demonstrated that the fluorine ion is the transport species. A general model for fluorine transport is proposed based upon a modified anti-Frenkel defect model. The difference in the fluorine transport process for the undistilled grade of BeF2 is seen as a consequence of the anti-Frenkel defect pair interaction with the [Be(OH)4[2− groupings.  相似文献   

18.
The evolution of the gelation of silica gel was studied by means of Fourier transform infrared spectroscopy. The gel was prepared by hydrolysis and polycondensation of tetraethyl orthosilicate in the presence of water with HCl, and with formamide (DCCA) in methanol either added or not. For both systems the gelation process was followed by the time evolution of the ν-Si---O(H) and ν-Si---O(Si) absorption bands. In the systems which used formamide, the ν-Si---O(H) peak shifts from ≈ν = 950 cm−1 for τ = 0 to ≈ν = 968 cm−1 (t = tgel) and tends to shifts to 975 cm−1 over a long period of time (t = 100tgel), and a slow rate evolution between 0.1 and 0.4 tgel is observed. In the absence of formamide the same evolution is observed without the slow rate plateau. For ν-Si-O(Si) absorption bands, the band near 1075 cm−1 remains practically unchanged in both systems during the experiment time, but the second absorption band at 1133 cm−1 is split into two bands each having its own specific evolution, depending on composition and temperature.  相似文献   

19.
Tellurite containing vanadate (50−x)V2O5xBi2O3–50TeO2 glasses with different bismuth (x=0, 5, 10, 15, 20 and 25 wt%) contents have been prepared by rapid quenching method. Ultrasonic velocities (both longitudinal and shear) and attenuation (for longitudinal waves only) measurements have been made using a transducer operated at the fundamental frequency of 5 MHz in the temperature range from 150 to 480 K. The elastic moduli, Debye temperature, and Poisson’s ratio have been obtained both as a function of temperature and Bi2O3 content. The room temperature study on ultrasonic velocities, attenuation, elastic moduli, Poisson’s ratio, Debye temperature and glass transition temperature show the absence of any anomalies with addition of Bi2O3 content. The observed results confirm that the addition of Bi2O3 modifier changes the rigid formula character of TeO2 to a matrix of regular TeO3 and ionic behaviour bonds (NBOs). A monotonic decrease in velocities and elastic moduli, and an increase in attenuation and acoustic loss as a function of temperature in all the glass samples reveal the loose packing structure, which is attributed to the instability of TeO4 trigonal bipyramid units in the network as temperature increases. It is also inferred that the glasses with low Bi2O3 content are more stable than with high Bi2O3 content.  相似文献   

20.
The (Pb0.90La0.10)TiO3 [PLT] thick films (3.0 μm) with a PbO buffer layer were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering method. The PLT thick films comprise five periodicities, the layer thicknesses of (Pb0.90La0.10)TiO3 and PbO in one periodicity are fixed. The PbO buffer layer improves the phase purity and electrical properties of the PLT thick films. The microstructure and electrical properties of the PLT thick films with a PbO buffer layer were studied. The PLT thick films with a PbO buffer layer possess good electrical properties with the remnant polarization (Pr=2.40 μC cm−2), coercive field (Ec=18.2 kV cm−1), dielectric constant (εr=139) and dielectric loss (tan δ=0.0206) at 1 kHz, and pyroelectric coefficient (9.20×10−9 C cm−2 K−1). The result shows the PLT thick film with a PbO buffer layer is a good candidate for pyroelectric detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号