首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel energy-transfer system involving nonaggregated cationic porphyrins adsorbed on an anionic-type clay surface and the electron-transfer reaction that occurs after light harvesting are described. In the clay-porphyrin complexes, photochemical energy transfer from excited singlet zinc porphyrins to free-base porphyrins proceeds. The photochemical electron-transfer reaction from an electron donor in solution (hydroquinone) to the adsorbed porphyrin in the excited singlet state was also examined. Because the electron-transfer rate from the hydroquinone to the excited singlet free-base porphyrin is larger than that to the excited singlet zinc porphyrin, we conclude that the energy transfer accelerates the overall electron-transfer reaction.  相似文献   

2.
Three oligonaphthalenes with zinc porphyrin and free-base porphyrin moieties were synthesized, in which cascade energy transfer (from naphthalene to free-base porphyrin via zinc porphyrin) was observed when the zinc and free-base porphyrins were close to each other.  相似文献   

3.
Single- and multiwalled carbon nanotubes have been covalently functionalized with free-base porphyrin. The quantity of porphyrin linked to the surface was determined from thermogravimetric and UV-vis analysis. A reversible protonation equilibrium between the attached porphyrin and the residual acid groups of the carbon nanotubes has been identified. Steady-state fluorescence emission spectrum of the solutions of porphyrin-linked carbon nanotubes shows that the porphyrins act as energy absorbing and electron transferring antennae, and the carbon nanotubes act as efficient electron acceptors. The porphyrin-linked carbon nanotubes show 95-100% emission quenching, indicating a fast photoinduced electron transfer.  相似文献   

4.
A series of multiporphyrin clusters has been synthesized and characterized in which there exists a logical gradient for either energy or electron transfer between the porphyrins. A central free-base porphyrin (FbP), for example, is equipped with peripheral zinc(II) porphyrins (ZnP) which act as ancillary light harvesters and transfer excitation energy to the FbP under visible light illumination. Additional energy-transfer steps occur at the triplet level, and the series is expanded by including magnesium(II) porphyrins and/or tin(IV) porphyrins as chromophores. Light-induced electron transfer is made possible by incorporating a gold(III) porphyrin (AuP(+)) into the array. Although interesting by themselves, these clusters serve as control compounds by which to understand the photophysical processes occurring within a three-stage dendrimer comprising an AuP(+) core, a second layer formed from four FbP units, and an outer layer containing 12 ZnP residues. Here, illumination into a peripheral ZnP leads to highly efficient electronic energy transfer to FbP, followed by charge transfer to the central AuP(+). Charge recombination within the resultant charge-shift state is intercepted by secondary hole transfer to the ZnP, which occurs with a quantum yield of around 20%. The final charge-shift state survives for some microseconds in fluid solution at room temperature.  相似文献   

5.
A new and general synthesis of porphyrin dimers is described. The synthesis involves the reaction of dibromoalkanes with phenolic porphyrins, such as 5(4-hydroxyphenyl)-10,15,20-tritolylporphyrin, to form σ-bromoalkyl porphyrin ethers. The latter compounds are then reacted with a second phenolic porphyrin to give porphyrin dimers. A mixed metalloporphyrin dimer has been prepared which contains both V(IV) and Cu(II). The compounds have been examined spectroscopically. The free-base porphyrin dimers show a splitting of the intense Soret band. This is interpreted as indicative of weak singlet energy transfer between the covalently linked porphyrins.  相似文献   

6.
Through-porphyrin electronic communication is investigated using "linear-type" and "corner-type" bis(quinoxalino)porphyrins in free-base form and their ZnII, CuII, NiII, and PdII derivatives. These compounds are porphyrins with quinoxalines fused on opposite or adjacent beta,beta'-pyrrolic positions; they were synthesized from 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)-porphyrin-2,3,12,13- and -2,3,7,8-tetraone, respectively, by reaction with 1,2-phenylenediamine. The degree of electron spin delocalization into the fused rings in the pi-radical anions of the free-base and metal(II) bisquinoxalinoporphyrins was elucidated by electrochemistry, UV-vis absorption, and electron spin resonance (ESR) spectra of the singly reduced species and density functional theory calculations. Hyperfine splitting patterns in the ESR spectra of the pi-radical anions show that symmetric molecules have delocalized electron spin, indicating that significant inter-quinoxaline interactions are mediated through the central porphyrin unit, these interactions being sufficient to guarantee through-molecule conduction. However, when molecular symmetry is broken by tautomeric exchange of the inner nitrogen hydrogens in the free-base porphyrin with a corner-type quinoxaline substitution pattern, the pi-radical anion becomes confined so that one quinoxaline group is omitted from spin delocalization. This indicates the appearance of a unidirectional barrier to through-molecule conduction, suggesting a new motif for chemically controlled rectification.  相似文献   

7.
Standard in vitro analyses determining the activity of different compounds included in the chemotherapy of colon cancer are currently insufficient. New ideas, such as photodynamic therapy (PDT), may bring tangible benefits. The aim of this study was to show that the biological activity of selected free-base and manganese (III) metallated porphyrins differs in the limitation of colon cancer cell growth in vitro. White light irradiation was also hypothesized to initiate a photodynamic effect on tested porphyrins. Manganese porphyrin (>1 μM) significantly decreased the viability of the colon tumor and normal colon epithelial cells, both in light/lack of light conditions, while decreasing a free-base porphyrin after only 3 min of white light irradiation. Both porphyrins interacted with cytostatics in an antagonistic manner. The manganese porphyrin mainly induced apoptosis and necrosis in the tumor, and apoptosis in the normal cells, regardless of light exposure conditions. The free-base porphyrin conducted mainly apoptosis and autophagy. Normal and tumor cells released low levels of IL-1β and IL-10. Tumor cells released a low level of IL-6. Light conditions and porphyrins were influenced at the cytokine level. Tested manganese (III) metallated and free-base porphyrins differ in their activity against human colon cancer cells. The first showed no photodynamic, but a toxic activity, whereas the second expressed high photodynamic action. White light use may induce a photodynamic effect associated with porphyrins.  相似文献   

8.
Photoinduced electron transfer in self-assemblies of porphyrins ion-paired with ssDNA wrapped around single-wall carbon nanotubes (SWCNTs) has been reported. To accomplish the three-component hybrids, two kinds of diameter-sorted semiconducting SWCNT(n,m)s of different diameter ((n,m) = (6,5) and (7,6)) and free-base or zinc porphyrin bearing peripheral positive charges ((TMPyP(+))M (tetrakis(4-N-methylpyridyl)porphyrin); M = Zn and H(2)) serving as light-absorbing photoactive materials are utilized. The donor-acceptor hybrids are held by ion-pairing between the negatively charged phosphate groups of ssDNA on the surface of the SWCNT and the positively charged at the ring periphery porphyrin macrocycle. The newly assembled bionano donor-acceptor hybrids have been characterized by transmission electron microscopy (TEM) and spectroscopic methods. Photoinduced electron transfer from the excited singlet porphyrin to the SWCNTs directly and/or via ssDNA as an electron mediator has been established by performing systematic studies involving the steady-state and time-resolved emission as well as the transient absorption studies. Higher charge-separation efficiency has been successfully demonstrated by the selection of the appropriate semiconductive SWCNTs with the right band gap, in addition to the aid of ssDNA as the electron mediator.  相似文献   

9.
Results from a tandem mass spectrometry (MS/MS) study, obtained with a reverse-geometry mass spectrometer, of the unimolecular and collision-induced reactions of doubly charged free-base and metal containing alkyl-substituted porphyrins formed by electron ionization are reported. These doubly charged porphyrin ions dissociate to yield both singly and doubly charged product ions via a number of reactions. This article classifies the major reactions observed, illustrating each with the appropriate spectra. Supplementary data from the same porphyrins, acquired with a tandem quadrupole MS/MS instrument, are also presented. The potential utility of some of these reactions as new methods for porphyrin analysis is discussed.  相似文献   

10.
A new pentaporphyrin array, constituted by a peptidic backbone and lateral chains with two free-base, one Mg(II), and two Zn(II) porphyrins, has been synthesized. The electrochemical and photophysical properties are not the mere superposition of those of its model compounds: slight shifts of the E(1/2) values and strong perturbation of both the Soret and Q-band absorption show substantial ground-state interactions among the component units, which take advantage of the rather flexible nature of the peptidic links. This multiporphyrin array, despite the flexible and nonconjugated nature of the peptidic spacers, plays the role of an antenna for visible light: an efficient photoinduced energy transfer takes place from the metalated porphyrin units to the free-base ones. Furthermore, the light emitted by the antenna can be: 1) tuned upon protonation of the free-base units, or 2) turned off by a redox input, since the formation of the Mg porphyrin radical cation, by either electrochemical or chemical methods, quenches the free-base porphyrin emission. Both quenching and tuning of the emission from the light-collecting center can be fully reverted by redox or chemical stimuli.  相似文献   

11.
Using a combination of cycloaddition-retroelectrocyclization reaction, free-base and zinc porphyrins (H2P and ZnP) are decorated at their β-pyrrole positions with strong charge transfer complexes, viz., tetracyanobuta-1,3-diene (TCBD)-phenothiazine ( 3 and 4 ) or TCBD-aniline ( 7 and 8 ), novel class of push-pull systems. The physico-chemical properties of these compounds (MP-Donor and MP-TCBD-Donor) have been investigated using a range of electrochemical, spectroelectrochemical, DFT as well as steady-state and time-resolved spectroscopic techniques. Ground-state charge transfer interactions between the porphyrin and the electron-withdrawing TCBD directly attached to the porphyrin π-system extended the absorption features well into the near-infrared region. To visualize the photo-events, energy level diagrams with the help of free-energy calculations have been established. Switching the role of porphyrin from the initial electron acceptor to electron donor was possible to envision. Occurrence of photoinduced charge separation has been established by complementary transient absorption spectral studies followed by global and target data analyses. Better charge stabilization in H2P derived over ZnP derived conjugates, and in phenothiazine derived over aniline derived conjugates has been possible to establish. These findings highlight the importance of the nature of porphyrins and second electron donor in governing the ground and excited state charge transfer events in closely positioned donor-acceptor conjugates.  相似文献   

12.
We have demonstrated the construction of multiple porphyrin arrays in the tobacco mosaic virus (TMV) supramolecular structures by self-assembly of recombinant TMV coat protein (TMVCP) monomers, in which Zn-coordinated porphyrin (ZnP) and free-base porphyrin (FbP) were site-selectively incorporated. The photophysical properties of porphyrin moieties incorporated in the TMV assemblies were also characterized. TMV-porphyrin conjugates employed as building blocks self-assembled into unique disk and rod structures under the proper conditions as similar to native TMV assemblies. The mixture of a ZnP donor and an FbP acceptor was packed in the TMV assembly and showed energy transfer and light-harvesting activity. The detailed photophysical properties of the arrayed porphyrins in the TMV assemblies were examined by time-resolved fluorescence spectroscopy, and the energy transfer rates were determined to be 3.1-6.4x10(9) s(-1). The results indicate that the porphyrins are placed at the expected positions in the TMV assemblies.  相似文献   

13.
The architecture of windmill hexameric zinc(II) -porphyrin array 1 is attractive as a light-harvesting functional unit in view of its three-dimensionally extended geometry that is favorable for a large cross-section of incident light as well as for a suitable energy gradient from the peripheral porphyrins to the meso-meso-linked diporphyrin core. Three core-modified windmill porphyrin arrays 2-4 were prepared for the purpose of enhancing the intramolecular energy-transfer rate and coupling these arrays with a charge-separation functional unit. Bisphenylethynylation at the meso and meso' positions of the diporphyrin core indeed resulted in a remarkable enhancement in the intramolecular S1-S1 energy transfer in 2 with tau=2 approximately 3 ps, as revealed by femtosecond time-resolved transient absorption spectroscopy. The fluorescence lifetime of the S2 state of the peripheral porphyrin energy donor determined by the fluorescence up-conversion method was 68 fs, and thus considerably shorter than that of the reference monomer (150 fs), suggesting the presence of the intramolecular energy-transfer channel in the S2 state manifold. Such a rapid energy transfer can be understood in terms of large Coulombic interactions associated with the strong Soret transitions of the donor and acceptor. Picosecond time-resolved fluorescence spectra and transient absorption spectra revealed conformational relaxation of the S1 state of the diporphyrin core with tau = 25 ps. Upon photoexcitation of models 3 and 4, which bear a naphthalenetetracarboxylic diimide or a meso-nitrated free-base porphyrin attached to the modified diporphyrin core as an electron acceptor, a series of photochemical processes proceeded, such as the collection of the excitation energy at the diporphyrin core, the electron transfer from the S1 state of the diporphyrin to the electron acceptor, and the electron transfer from the peripheral porphyrins to the diporphyrin cation radical, which are coupled to provide a fully charge-separated state such as that in the natural photosynthetic reaction center. The overall quantum yield for the full charge separation is better in 4 than in 3 owing to the slower charge recombination associated with smaller reorganization energy of the porphyrin acceptor.  相似文献   

14.
trans-AB(2)C porphyrins with A = C(6)H(4)-COOR, C = C(6)H(4)-NX(2) and B = C(6)H(5) (R = CH(3), H; X = O, H) have been synthesised by a rational high-yield procedure (1a-1d) and their zinc(ii) and copper(ii) complexes have been prepared (2a-2d, 3a-3d ).1a, 2a .THF and 3a display different distortions of the porphyrin core as shown by single crystal X-ray crystallography and NSD analyses. The Soret and Q bands of free-base and metalated porphyrins with mixed electron donating and withdrawing substituents (NH(2)/COOR) are red-shifted as are the corresponding emission bands of free-base and zinc porphyrins. The electronic asymmetry revealed by spectrocopy is rationalised by DFT calculations.  相似文献   

15.
Photochemical hole burning (PHB) of free-base porphyrins in host polymers as a site-selective spectroscopy reveals the existence of vibronic structure in a porphyrin Q-band peak and low-energy excitation modes of host polymers. A new mechanism of photon-gated PHB by two-color sensitization of photoreactive polymers with a zinc porphyrin is also presented.  相似文献   

16.
New ethanediyl-bridged unsymmetrical mono- and heterometallated dimers of 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin (H2oep) containing transition-metal ions (Mn and Fe) were synthesized by a facile stepwise metallation/demetallation process under mild conditions. The novel metallation strategy initially involved the predominant insertion of Zn into one of the two porphyrin rings of the free-base dimer, followed by the incorporation of Mn or Fe into the other porphyrin ring under exceptionally mild conditions, giving corresponding heterometallic dimers; the subsequent removal of Zn yielded mono-transition-metal dimers. The emission spectrum of the monozinc dimer predominantly exhibited fluorescence bands of the free-base porphyrin component, indicating a very efficient energy-transfer process. Conversely, emission of the free-base or Zn porphyrin component of transition metal containing dimers was strongly quenched due to photoinduced electron transfer.  相似文献   

17.
Novel molecular energy and electron transfer assemblies in vesicular form, which are made of self-organized amphiphilic porphyrins bearing phospholipid-like substituents (lipid-porphyrins), have been photochemically characterized. Tetraphenylporphyrin (TPP) derivatives with four dialkylphosphocholine groups [free-base (1 a), Zn(2+) complex (1 b), and Fe(3+) complex (1 c)] are spontaneously associated in water to form spherical unilamellar vesicles with a diameter of 100-150 nm. Exciton calculations based on the bilayered sheet model of 1 b, which has a porphyrin packing similar to that seen in the triclinic unit cell of the Zn(2+)TPP crystals, reproduced the Soret band bathochromic shift appearing in the aqueous solution of 1 b well. The UV/Vis absorption spectrum of the 1 a/1 b hybrid vesicles (molar ratio: 1/1) showed no electronic interaction between the two porphyrin chromophores in the ground state, but efficient intermolecular singlet-singlet energy transfer took place from the excited 1 b donors to the 1 a acceptor within the vesicle. Near-field scanning optical microspectroscopy of the 1 a/1 b vesicles on a graphite surface also showed only free-base porphyrin fluorescence. The efficiency of the energy transfer was 0.81 and the rate constant was 3.1 x 10(9) s(-1). On the other hand, protoporphyrin IX bearing two alkylphosphocholine propionates (2) was incorporated into the 1 a or 1 c bilayer vesicles (ca. 100 nm phi, molar ratio: 1 a/2 or 1 c/2=10). The UV/Vis absorption spectrum showed that 2 was successfully anchored into the fluid alkylene region of the membrane without stacking. Photoirradiation (lambda(ex): 390 nm) of the 1 c/2 vesicles in the presence of triethanolamine led a vectorial electron transfer from the outer aqueous phase to the membrane center, which allowed reduction of the ferric ion of the Fe(3+)TPP platform.  相似文献   

18.
A series of coronenetetraimide (CorTIm)‐centered cruciform pentamers containing multiporphyrin units, in which four porphyrin units are covalently linked to a CorTIm core through benzyl linkages, were designed and synthesized to investigate their structural, spectroscopic, and electrochemical properties as well as photoinduced electron‐ and energy‐transfer dynamics. These systems afforded the first synthetic case of coroneneimide derivatives covalently linked with dye molecules. The steady‐state absorption and electrochemical results indicate that a CorTIm and four porphyrin units were successfully characterized by the corresponding reference monomers. In contrast, the steady‐state fluorescence measurements demonstrated that strong fluorescence quenching relative to the corresponding monomer units was observed in these pentamers. Nanosecond laser flash photolysis measurements revealed the occurrence of intermolecular electron transfer from triplet excited state of zinc porphyrins to CorTIm. Femtosecond laser‐induced transient absorption measurements for excitation of the CorTIm unit clearly demonstrate the sequential photoinduced energy and electron transfer between CorTIm and porphyrins, that is, occurrence of the initial energy transfer from CorTIm (energy donor) to porphyrins (energy acceptor) and subsequent electron transfer from porphyrins (electron donor) to CorTIm (electron acceptor) in these pentamers, whereas only the electron‐transfer process from porphyrins to CorTIm was observed when we mainly excite porphyrin units. Finally, construction of high‐order supramolecular patterning of these pentamers was performed by utilizing self‐assembly and physical dewetting during the evaporation of solvent.  相似文献   

19.
A new series of molecular dyads and pentad featuring free-base porphyrin and ruthenium phthalocyanine have been synthesized and characterized. The synthetic strategy involved reacting free-base porphyrin functionalized with one or four entities of phenylimidazole at the meso position of the porphyrin ring with ruthenium carbonyl phthalocyanine followed by chromatographic separation and purification of the products. Excitation transfer in these donor-acceptor polyads (dyad and pentad) is investigated in nonpolar toluene and polar benzonitrile solvents using both steady-state and time-resolved emission techniques. Electrochemical and computational studies suggested that the photoinduced electron transfer is a thermodynamically unfavorable process in nonpolar media but may take place in a polar environment. Selective excitation of the donor, free-base porphyrin entity, resulted in efficient excitation transfer to the acceptor, ruthenium phthalocyanine, and the position of imidazole linkage on the free-base porphyrin could be used to tune the rates of excitation transfer. The singlet excited Ru phthalocyanine thus formed instantly relaxed to the triplet state via intersystem crossing prior to returning to the ground state. Kinetics of energy transfer (k(ENT)) was monitored by performing transient absorption and emission measurements using pump-probe and up-conversion techniques in toluene, respectively, and modeled using a F?rster-type energy transfer mechanism. Such studies revealed the experimental k(ENT) values on the order of 10(10)-10(11) s(-1), which readily agreed with the theoretically estimated values. Interestingly, in polar benzonitrile solvent, additional charge transfer interactions in the case of dyads but not in the case of pentad, presumably due to the geometry/orientation consideration, were observed.  相似文献   

20.
Masayuki Endo 《Tetrahedron》2008,64(8):1839-1846
DNA-porphyrin conjugates were designed and synthesized in which free-base and Zn-coordinated porphyrins were introduced to the N6-position of the internal adenosine. Conformations of the porphyrin dimer in the major groove of duplex DNA were controlled by changing the orientation and the distance between the two porphyrin moieties. The porphyrin dimers formed a thermally favorable face-to-face conformation on the duplex DNA. In the disadvantageous geometry for porphyrin dimer formation on the duplex, the porphyrins induced the DNA duplex structures to the Z-form conformation. These results indicate that the interaction of the two porphyrins and the conformation of duplex DNA are controlled by the program of DNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号