首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lupeol, together with alpha- and beta-amyrins in smaller quantities, has been found for the first time in the epicuticular wax of white cabbage (Brassica oleracea L. convar. capitata (L.) Alef. var. alba DC) leaf surface extract. The three triterpenoids were identified by a new high-performance liquid chromatographic (HPLC) method with UV and mass spectrometric (MS) detection using atmospheric pressure chemical ionization (APCI). All three isomeric compounds gave a parent ion peak at m/z 409 [M+H-18](+) and the relative intensities of some characteristic fragment ion peaks in tandem mass spectrometric (MS-MS) spectra of this parent ion enabled differentiation between the isomers. An additional peak at m/z 439 [M+H](+), which could be oleanonic or ursonic aldehyde, was detected by HPLC-APCI-MS. Saponification of cabbage leaf surface extract with 20% NaOH in methanol at 65 degrees C for 2h had no influence on lupeol, or alpha- or beta-amyrins, but lead to the formation of three additional compounds, which were not identified.  相似文献   

2.
Capillary electrophoresis-electrospray tandem mass spectrometry (CE-MS/MS) has been used to identify degradation products of the aspartyl tripeptides Phe-Asp-GlyNH(2) and Gly-Asp-PheNH(2) following incubation of the peptides in acidic and alkaline solution. At pH 2, the dominant decomposition products resulted from cleavage of the peptide backbone amide bonds to yield the respective dipeptides and amino acids. In addition, the cyclic aspartyl succinimide intermediate was identified by its [M+H](+) at m/z = 319 and the MS/MS spectrum exhibiting a simple fragmentation pattern with the [C(8)H(10)N](+)-ion as the principal daughter ion (a(1) of Phe-Asp-GlyNH(2)). Deamidation of the C-terminal amide as well as isomerization and enantiomerization of the Asp residue occurred upon incubation at pH 10. alpha-Asp and the isomeric beta-Asp and most of the diastereomeric forms (corresponding to D/L-Asp) could be separated by CE. All isomers could be identified based on their MS/MS spectra. Peptides with the amino acid sequence Phe-Asp-Gly containing the regular alpha-Asp bond displayed a highly intense b(2) fragment ion and a low abundant y(2) ion. In contrast, the y(2) and a(1) fragment were high abundant daughter ions in the mass spectra of beta-Asp peptides while the b(2) ion exhibited a lower abundance. Differences in the MS/MS spectra of the isomers of the peptides with the sequence Gly-Asp-Phe were obvious but less pronounced. In conclusion, CE-MS/MS proved to be a useful tool to study the decomposition and enantiomerization of peptides including the isomerization of Asp residues, due to the combination of efficient separation of isomers by CE and their identification by MS/MS.  相似文献   

3.
Electron capture dissociation of singly and multiply phosphorylated peptides   总被引:12,自引:0,他引:12  
Analysis of phosphotyrosine and phosphoserine containing peptides by nano-electrospray Fourier transform ion cyclotron resonance (FTICR) mass spectrometry established electron capture dissociation (ECD) as a viable method for phosphopeptide sequencing. In general, ECD spectra of synthetic and native phosphopeptides appeared less complex than conventional collision activated dissociation (CAD) mass spectra of these species. ECD of multiply protonated phosphopeptide ions generated mainly c- and z(.)-type peptide fragment ion series. No loss of water, phosphate groups or phosphoric acid from intact phosphopeptide ions nor from the c and z(.) fragment ion products was observed in the ECD spectra. ECD enabled complete or near-complete amino acid sequencing of phosphopeptides for the assignment of up to four phosphorylation sites in peptides in the mass range 1400 to 3500 Da. Nano-scale Fe(III)-affinity chromatography combined with nano-electrospray FTMS/ECD facilitated phosphopeptide analysis and amino acid sequencing from crude proteolytic peptide mixtures.  相似文献   

4.
Electrospray ionization (ESI) and tandem mass spectrometry (MS/MS) experiments, as well as electronic impact (EI) and chemical ionization (CI) techniques, have been applied to the title compounds 1a-h. The observation of different fragmentation pathways in the three sets of spectra is in accord with different degrees of internal excitation of the investigated precursors. In ESI (methanol as solvent) and CI (methane as reagent gas) spectra, the MH(+) ion represents the most important peak, while the fragments [M - OH](+) and [M - SO](+) are either the base peak or a very abundant peak in the EI mass spectra of these compounds. ESI-MS/MS experiments on the parent ions [MH](+) show that the loss of a fragment of 140 Da corresponding to p-toluenesulfenic acid is common from all the precursors. As well as competitive pathways, the second generation ions have also been elucidated to allow some observations to be made concerning the relationships between structure type and mass spectrometric characteristics.  相似文献   

5.
Positive ion tandem quadrupole mass spectrometric methods for structural characterization of the subclasses of sn-glycero-3-phosphocholine (PC), including alkylacyl- and alk-1-enylacylphosphocholine and lysophosphatidylcholine (LPC), are described. Following collisionally activated dissociation, the [M + Li](+) ions generated by electrospray ionization yield abundant informative fragment ions that permit structural determination, and distinction of regioisomers among lysophosphatidylcholine can be easily achieved. In contrast, structurally informative ions arising from [M + H](+) or [M + Na](+) ions are less prominent. The most abundant ion observed in the product-ion spectra of the [M + Li](+) ions of plasmenyl- and plasmanyl-PC and of LPC arises from loss of N(CH(3))(3) ([M + Li - 59](+)). This feature permits their distinction from a product-ion spectrum arising from a diacylphosphatidylcholine, in which the [M + Li - 183](+) ion reflecting loss of phosphocholine is the most prominent. Examples for identification of various subclasses of PC in biological extracts by tandem mass spectrometry applying various constant neutral loss scannings are also shown.  相似文献   

6.
A prototype matrix-assisted laser desorption/ionization quadrupole time-of-flight (MALDI-TOF) tandem mass spectrometer was used to sequence a series of phosphotyrosine-, phosphothreonine- and phosphoserine-containing peptides. The high mass resolution and mass accuracy of the instrument allowed the localization of one, three or four phosphorylated amino acid residues in phosphopeptides up to 3.1 kDa. Tandem mass spectra of two different phosphotyrosine peptides permitted amino acid sequence determination and localization of one and three phosphorylation sites, respectively. The phosphotyrosine immonium ion at m/z 216.04 was observed in these MALDI low-energy CID tandem mass spectra. Elimination of phosphate groups was evident from the triphosphorylated peptide but not from the monophosphorylated species. The main fragmentation pathway for the synthetic phosphothreonine-containing peptide and for phosphoserine-containing peptides derived from beta-casein and ovalbumin was the beta-elimination of phosphoric acid with concomitant conversion of phosphoserine to dehydroalanine and phosphothreonine to 2-aminodehydrobutyric acid. Peptide fragment ions of the b- and y-type allowed, in all cases, the localization of phosphorylation sites. Ion signals corresponding to (b-17), (b-18) and (y-17) fragment ions were also observed. The abundant neutral loss of phosphoric acid (-98 Da) is useful for femtomole level detection of phosphoserine-peptides in crude peptide mixtures generated by gel in situ digestion of phosphoproteins.  相似文献   

7.
Four isomers of steroidal saponins were differentiated using multiple-stage tandem mass spectrometry combined with electrospray ionization (ESI-MS(n)). With the addition of lithium salt, the [M+Li](+) ions of saponins were observed in the ESI spectra. MS(n) spectra of these [M+Li](+) ions provided detailed structural information and allowed differentiation of the four isomeric saponins. The cross-ring cleavage ions from the saccharide chains of the saponins could be used as diagnostic ions for information concerning the linkage of the sugar moieties of the saponins. The masses of the X, A, Y and C type fragment ions formed from [M+Li](+) ions of the isomeric saponins provided information defining the methyl group locations.  相似文献   

8.
We describe tandem mass spectrometric approaches, including multiple stage ion-trap and source collisionally activated dissociation (CAD) tandem mass spectrometry with electrospray ionization (ESI) to characterize inositol phosphorylceramide (IPC) species seen as [M - H](-) and [M - 2H + Li](-) ions in the negative-ion mode as well as [M + H](+), [M + Li](+), and [M - H + 2Li](+) ions in the positive-ion mode. Following CAD in an ion-trap or a triple-stage quadrupole instrument, the [M - H](-) ions of IPC yielded fragment ions reflecting only the inositol and the fatty acyl substituent of the molecule. In contrast, the mass spectra from MS(3) of [M - H - Inositol](-) ions contained abundant ions that are readily applicable for assignment of the fatty acid and long-chain base (LCB) moieties. Both the product-ion spectra from MS(2) and MS(3) of the [M - 2H + Alk](-), [M + H](+), [M + Alk](+), and [M - H + 2Alk](+) ions also contained rich fragment ions informative for unambiguous assignment of the fatty acyl substituent and the LCB. However, the sensitivity of the ions observed in the forms of [M - 2H + Alk](-), [M + H](+), [M + Alk](+), and [M - H + 2Alk](+) (Alk = Li, Na) is nearly 10 times less than that observed in the [M - H](-) form. In addition to the major fragmentation pathways leading to elimination of the inositol or inositol monophosphate moiety, several structurally informative ions resulting from rearrangement processes were observed. The fragmentation processes are similar to those previously reported for ceramides. While the tandem mass spectrometric approach using MS(n) (n = 2, 3) permits the structures of the Leishmania major IPCs consisting of two isomeric structures to be unveiled in detail, tandem mass spectra from constant neutral loss scans may provide a simple method for detecting IPC in mixtures.  相似文献   

9.
Electrospray (ESI) collisional-activated dissociation (CAD) tandem mass spectrometric methods for the structural characterization of inositol phosphates (InsPs) using both quadrupole and sector mass spectrometers are described. Under low-energy CAD, the [M + H](+) ions of the positional isomers of inositol phosphates, including inositol mono-, bis- and trisphosphates, yield distinguishable product-ion spectra, which are readily applicable for isomer differentiation. In contrast, the product-ion spectra arising from high-energy CAD (2 keV collision energy, floating at 50%) tandem sector mass spectrometry are less applicable for isomer identification. The differences in the product-ion spectrum profiles among the aforementioned InsP isomers become more substantial and differentiation of positional isomers can be achieved when the collison energy is reduced to 1 keV (floating at 75%). These results demonstrate that the applied collision energies play a pivotal role in the fragmentations upon CAD. The product-ion spectra are similar among the positional isomers of inositol tetrakisphosphates and of inositol pentakisphosphates. Thus, isomeric distinction for these two inositol polyphosphate classes could not be established by the tandem mass spectrometric methods that have achieved such distinctions for the less highly phosphorylated inositol phosphate classes. Under both high- and low-energy CAD, the protonated molecular species of all InsPs undergo similar fragmentation pathways, which are dominated by the consecutive losses of H(2)O, HPO(3) and H(3)PO(4).  相似文献   

10.
The structures of two oligomers of acidic xylo-oligosaccharides (XOS) of the same molecular weight (634 Da), Xyl(2)MeGlcAHex and Xyl(2)GlcA(2) were differentiated by electrospray tandem mass spectrometry (ESI-MS/MS). These oligomers were present in a mixture of XOS obtained by acid hydrolysis of heteroxylans extracted from Eucalyptus globulus wood (Xyl(2)MeGlcAHex) and Olea europaea olive fruit (Xyl(2)GlcA(2)). In the ESI-MS spectra of the XOS, ions at m/z 657 and 652 were observed and assigned to [M + Na](+) and [M + NH(4)](+), respectively. The ESI-MS/MS spectrum of [M + Na](+) ion of Xyl(2)MeGlcAHex showed the loss of Hex residue from the reducing end followed by the loss of MeGlcA moiety. Simultaneously, the loss of a Xyl residue from either the reducing or the non-reducing ends was detected. On the other hand, the fragmentation of Xyl(2)GlcA(2) occurs mainly by the loss of one and two GlcA residues or by the loss of the GlcAXyl moiety, due to the glycosidic bond cleavage between the two Xyl residues. Loss of one and two CO(2) molecules was only observed for this oligomer, where the GlcA are in vicinal Xyl residues. The ESI-MS/MS spectra of [M + NH(4)](+) of both oligomers showed the loss of NH(3), resulting in the protonated molecule, where the presence of ions assigned as protonated molecules of aldobiuronic acid residues, [MeGlcA - Xyl + H](+) and [GlcA - Xyl + H](+), are diagnostic ions of the presence of MeGlcA and GlcA moieties in XOS. Since these structures occur in small amounts in complex acidic XOS mixtures and are very difficult, if possible, to isolate, tandem mass spectrometry revealed to be a powerful tool for the characterization of these types of substitution patterns present in heteroxylans.  相似文献   

11.
Different mass spectrometric methods, stable isotope labeling, and theoretical calculations have allowed us to structurally characterize and differentiate the isomeric ion structures produced by the two heteroaromatic isomers 3-methyl-1,2-benzisoxazole and 2-methyl-1,3-benzoxazole. The low-energy collision induced dissociation spectra of their molecular ions show large differences. Although both of them produce abundant loss of CO, that involves a carbon atom of the benzene ring, the 2-methyl-1,3-benzoxazole also shows abundant [M-CHO](+) ions at m/z 104, the intensity of which is quite low in the case of its isomer 3-methyl-1,2-benzisoxazole. In addition, MS/MS measurements of fragment ions show characteristic differences that allow distinction among the isomers depending on the original arrangement of the atoms in the five-membered ring. Theoretical ab initio calculations have allowed to determine chemico-physical properties of different ions and to propose a rationalization of the decomposition pathways followed by the two benz(is)oxazole isomers.  相似文献   

12.
The electrospray ionization tandem mass spectrometric (ESI-MS/MS) characteristics and fragmentation mechanisms of eight distamycin analogues containing N-methylpyrrole and N-methylimidazole were investigated. The members of two isomeric groups of distamycin analogues with the same elemental composition can be distinguished by MS/MS spectra of protonated molecules and of significant fragment ions.  相似文献   

13.
The five side-chain regioisomers of 4-methoxy-3-methylphenethylamine constitute a unique set of compounds having an isobaric relationship with the controlled drug substance 3,4-methylenedioxymethamphetamine (3,4-MDMA or Ecstasy). These isomeric forms of the 4-methoxy-3-methylphenethylamines have mass spectra essentially equivalent to 3,4-MDMA, and all have a molecular weight of 193 and major fragment ions in their electron ionization mass spectra at m/z 58 and 135/136. Mass spectral differentiation of 2,3- and 3,4-MDMA from primary and secondary amine regioisomeric side chains of 4-methoxy-3-methylphenethylamines was possible after formation of the perfluoroacyl derivatives, pentafluoropropionamides and heptafluorobutyrylamides. The mass spectra for these derivatives are significantly individualized, and the resulting unique fragment ions allow for specific side-chain identification. The individualization is the result of fragmentation of the alkyl carbon-nitrogen bond, which yielded unique hydrocarbon fragments. The heptafluorobutyrylamide derivatives offer more fragment ions for molecular individualization among these regioisomeric substances. Gas chromatographic separation on relatively non-polar stationary phases successfully resolves these derivatives.  相似文献   

14.
Sequencing of peptides via low-energy collision-induced dissociation of protonated peptides typically yields b(n) and y(n) sequence ions. The isomeric residues leucine and isoleucine rarely can be distinguished in these experiments since they give b(n) and y(n) sequence ions of the same m/z. Siu's pioneering work on electrospray ionization of copper complexes of peptides (Chu IK, Rodriquez CF, Lau TC, Hopkinson AC, Siu KWM. J. Phys. Chem. B 2000; 104: 3393) provides a way of forming radical cations of peptides in the gas phase. This method was used to generate M(+ small middle dot) ions of the two isomeric peptides Gly-Leu-Arg and Gly-Ile-Arg in order to compare their fragmentation reactions. Both radical cations fragment to give even electron y(2) and y(1) sequence ions as well as side-chain radical losses of CH(3) and CH(3)CH(2) for isoleucine and (CH(3))(2)CH for leucine. In contrast the [M + H](+) and [M + 2H](2+) ions do not allow distinction between the isomeric leucine and isoleucine peptides.  相似文献   

15.
Electron-transfer dissociation (ETD) with supplemental activation of the doubly charged deamidated tryptic digested peptide ions allows differentiation of isoaspartic acid and aspartic acid residues using the c + 57 or z − 57 peaks. The diagnostic peak clearly localizes and characterizes the isoaspartic acid residue. Supplemental activation in ETD of the doubly charged peptide ions involves resonant excitation of the charge reduced precursor radical cations and leads to further dissociation, including extra backbone cleavages and secondary fragmentation. Supplemental activation is essential to obtain a high quality ETD spectrum (especially for doubly charged peptide ions) with sequence information. Unfortunately, the low-resolution of the ion trap mass spectrometer makes detection of the diagnostic peak, [M-60], for the aspartic acid residue difficult due to interference with side-chain loss from arginine and glutamic acid residues.  相似文献   

16.
17.
The study of several structural variations (the length, the degree of unsaturation and hydroxylation of the alkyl chains, the number and nature of osidic residues) helped understand the behaviour of neutral glycosphingolipids (GSLs) on porous graphitic carbon stationary phase (PGC). Atmospheric pressure photoionization mass spectrometry (APPI) and tandem mass spectrometry were used to perform the detection and the identification of molecular species in positive mode where [M+H](+) and [M-H(2)O+H](+) ions provided structural information on the fatty acid and the sphingoid base. The retention of GSLs increased with the hydrocarboneous volume of their alkyl chains and with the number of osidic residues in agreement with hydrophobic properties and polar retention effect of graphite, respectively. The presence of polar groups, such as OH-group or double bond within alkyl chains, decreased their retention. The coupling of chromatography on PGC with APPI tandem mass spectrometry detection appeared a powerful technique to discriminate isobaric molecules. Isobaric solutes differing by the position of two double bonds or by the repartition of hydrocarboneous skeleton were discriminated according to their chromatographic comportment or their mass spectrum, respectively. Among isobaric molecules, only few structures differing by the nature of osidic residue were not discriminated (i.e. glucosylceramide and galactosylceramide with similar ceramide skeleton were co-eluted and no difference in mass spectra was observed).  相似文献   

18.
Doubly protonated phosphopeptide (YGGMHRQET(p)VDC) ions obtained by electrospray ionization were collided with Xe and Cs targets to give singly and doubly charged positive ions via collision-induced dissociation (CID). The resulting ions were analyzed and detected by using an electrostatic analyzer (ESA). Whereas doubly charged fragment ions resulting from collisionally activated dissociation (CAD) were dominant in the CID spectrum with the Xe target, singly charged fragment ions resulting from electron transfer dissociation (ETD) were dominant in the CID spectrum with the Cs target. The most intense peak resulting from ETD was estimated to be associated with the charge-reduced ion with H2 lost from the precursor. Five c-type fragment ions with amino acid residues detached consecutively from the C-terminal were clearly observed without a loss of the phosphate group. These ions must be formed by N--Calpha bond cleavage, in a manner similar to the cases of electron capture dissociation (ECD) and ETD from negative ions. Although the accuracy in m/z of the CID spectra was about +/-1 Th because of the mass analysis using the ESA, it is supposed from the m/z values of the c-type ions that these ions were accompanied by the loss of a hydrogen atom. Four z-type (or y--NH3, or y--H2O) ions analogously detached consecutively from the N-terminal were also observed. The fragmentation processes took place within the time scale of 4.5 micros in the high-energy collision. The present results demonstrated that high-energy ETD with the alkali metal target allowed determination of the position of phosphorylation and the amino acid sequence of post-translational peptides.  相似文献   

19.
A mass spectral study of a series of new Boc-C-linked carbo-beta(3)-peptides prepared from C-linked carbo-beta(3)-amino acids (Caa) was carried out using liquid secondary ion mass spectrometry (LSIMS), electrospray ionization (ESI) and tandem mass spectrometry. Using the nomenclature of Roepstorff and Fohlman, the positive ion high- and low energy collision-induced dissociation (CID) of [M + H - Boc + H](+) ions of the peptides produce both N- and C-terminus ions, y(n) (+) and b(n) (+) ions, with high abundance and other ions of low abundance. Further, characteristic fragment ions of carbohydrate moiety are observed. In contrast to the CID of protonated peptide acids, the CID of [M - H](-) ions of the beta(3)-peptide acids do not give b(n)(-) ions and show abundant z(n)(-) and c(n) (-) ions which are insignificant in the former. Two pairs of positionally isomeric Boc-carbo-beta(3)-dipeptides were differentiated by the CID of [M + H](+) ions in LSIMS and ESIMS. The fragment ion [M + H - C(CH(3))(3) + H](+) formed from [M + H](+) by the loss of 2-methylprop-2-ene is relatively more abundant in the dipeptide Boc-NH-beta-hGly-Caa(S)-OCH(3) (14) containing the sugar moiety at the C-terminus whereas it is insignificant in Boc-NH-Caa(S)-beta-hGly-OCH(3) (13), which has the sugar moiety at the N-terminus. Similarly, two pairs of diastereomeric dipeptides were distinguished by the high- and low-energy CID of [M + H](+) ions. The loss of 2-methylprop-2-ene is more pronounced for Boc-NH-Caa(R)-beta-hGly-OCH(3) (17) and Boc-NH-Caa(R)-Caa(S)-OCH(3) (18) isomers whereas it is insignificant for Boc-NH-Caa(S)-beta-hGly-OCH(3) (13) and Boc-NH-Caa(S)-Caa(S)-OCH(3) (2) isomers. This was attributed to a favorable configuration of the carbohydrate moiety favoring the 'H' migration involved in the loss of 2-methylprop-2-ene from the [M + H](+) ions of isomers 17 and 18 compared with the unfavorable configuration of the carbohydrate moiety in isomers 13 and 2.  相似文献   

20.
Three glycerophosphatidylcholine (GPC) phospholipids (oleoyl-, linoleoyl- and arachidonoylpalmitoylphosphatidylcholine) were oxidized under Fenton reaction conditions (H(2)O(2) and Fe(2+)), and the long-chain oxidation products were detected by electrospray mass spectrometry (ES-MS) and characterized by ES-MS/MS. The intact oxidation products resulted from the insertion of oxygen atoms into the phospholipid structure. The tandem mass spectra of the [MNa](+) molecular ion showed, apart from the characteristic fragments of GPC, fragment ions resulting from neutral losses from [MNa](+), and combined with loss of 59 and 183 Da from [MNa](+). These ions resulted from cleavage of the bond near the hydroxy group by a charge-remote fragmentation mechanism, allowing its location to be pinpointed. The fragments thus formed reflected the positions of the double bonds and of the derivatives along the unsaturated fatty acid chain, giving very useful information, as they allowed the presence of structural isomers and positional isomers to be established. The identification of the fragment ion at m/z 163, which is 16 Da higher than the five-membered cyclophosphane ion (m/z 147), in some tandem mass spectra, is consistent with the oxidation of the phosphocholine head. Some ions were found to occur with the same m/z value; in two of the phospholipids and based on the MS/MS data, structural and positional isomers were differentiated. Our findings indicate that MS/MS is a valuable tool for the identification of the wide complexity of structural features occurring in oxidized phosphatidylcholines during lipid peroxidation in cellular membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号