首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The salts [Pt{C(NHMe)(2)}(4)][Au(CN)(2)](2), [Pt{C(NHMe)(2)}(4)][Ag(2)(CN)(3)][Ag(CN)(2)], [Pt(en)(2)][Au(CN)(2)](2), [Pt(en)(2)][Ag(CN)(2)](2), and [Pt(bipy)(2)][Au(CN)(2)](2) have been prepared by mixing solutions of salts containing the appropriate cation with solutions of K[Au(CN)(2)] or K[Ag(CN)(2)]. Because the platinum atom in the cation is sterically protected, the structures of [Pt{C(NHMe)(2)}(4)][Au(CN)(2)](2) and [Pt{C(NHMe)(2)}(4)][Ag(2)(CN)(3)][Ag(CN)(2)] reveal no close metal-metal interactions. Colorless crystals of [Pt(en)(2)][Au(CN)(2)](2) and [Pt(en)(2)][Ag(CN)(2)](2) are isostructural and involve extended chains of alternating cations and anions that run parallel to the crystallographic a axis, along with isolated anions. In the chains, the metal-metal separations are relatively short: Pt...Au, 3.1799(3) Angstroms; Pt...Ag, 3.1949(2) Angstroms. In [Pt(bipy)(2)][Au(CN)(2)](2), each cation has axial interactions with the anions through close Pt...Au contacts [3.1735(6) Angstroms]. In addition, the anions are weakly linked through Au...Au contacts of 3.5978(9) Angstroms. Unlike the previously reported Pt/Au complex [Pt(NH(3))(4)][Au(CN)(2)](2).1.5H(2)O, which is luminescent, none of the salts reported here luminesce.  相似文献   

2.
The purpose of this work was to characterise supercritical hydrofluorocarbons (HFC) that can be used as solvents for electrodeposition. The phase behaviour of CHF(3), CH(2)F(2), and CH(2)FCF(3) containing [NBu(n)(4)][BF(4)], [NBu(n)(4)][B{3,5-C(6)H(3)(CF(3))(2)}(4)] and Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] was studied and the conditions for forming a single supercritical phase established. Although all three HFCs are good solvents for [NBu(n)(4)][BF(4)] the results show that the CH(2)F(2) system has the lowest p(r) for dissolving a given amount of [NBu(n)(4)][BF(4)]. The solubility of Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] in CH(2)F(2) was found to be unexpectedly high. Studies of the phase behaviour of CH(2)F(2) containing [NBu(n)(4)][BF(4)] and [Cu(CH(3)CN)(4)][BF(4)] showed that the copper complex was unstable in the absence of CH(3)CN. For CHF(3), [Cu(hfac)(2)] was more soluble and more stable than [Cu(CH(3)CN)(4)][BF(4)] and only increased the phase-separation pressure by a moderate amount. Studies of the conductivity of [NBu(n)(4)][B(C(6)F(5))(4)], [NBu(n)(4)][B{3,5-C(6)H(3)(CF(3))(2)}(4)], [NR(f)Bu(n)(3)][B{3,5-C(6)H(3)(CF(3))(2)}(4)] (R(f) = (CH(2))(3)C(7)F(15)), and Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] were carried out in scCH(2)F(2). The results show that these salts are more conducting than [NBu(n)(4)][BF(4)] under the same conditions although the increase is much less significant than that reported in previous work in supercritical CO(2) + CH(3)CN. Consequently, either [NBu(n)(4)][BF(4)] or the corresponding BARF salts would be suitable background electrolytes for electrodeposition from scCH(2)F(2).  相似文献   

3.
Treatment of the complex [U(Tren(TMS))(Cl)(THF)] [1, Tren(TMS) = N(CH(2)CH(2)NSiMe(3))(3)] with Me(3)SiI at room temperature afforded known crystalline [U(Tren(TMS))(I)(THF)] (2), which is reported as a new polymorph. Sublimation of 2 at 160 °C and 10(-6) mmHg afforded the solvent-free dimer complex [{U(Tren(TMS))(μ-I)}(2)] (3), which crystallizes in two polymorphic forms. During routine preparations of 1, an additional complex identified as [U(Cl)(5)(THF)][Li(THF)(4)] (4) was isolated in very low yield due to the presence of a slight excess of [U(Cl)(4)(THF)(3)] in one batch. Reaction of 1 with one equivalent of lithium dicyclohexylamide or bis(trimethylsilyl)amide gave the corresponding amide complexes [U(Tren(TMS))(NR(2))] (5, R = cyclohexyl; 6, R = trimethylsilyl), which both afforded the cationic, separated ion pair complex [U(Tren(TMS))(THF)(2)][BPh(4)] (7) following treatment of the respective amides with Et(3)NH·BPh(4). The analogous reaction of 5 with Et(3)NH·BAr(f)(4) [Ar(f) = C(6)H(3)-3,5-(CF(3))(2)] afforded, following addition of 1 to give a crystallizable compound, the cationic, separated ion pair complex [{U(Tren(TMS))(THF)}(2)(μ-Cl)][BAr(f)(4)] (8). Reaction of 7 with K[Mn(CO)(5)] or 5 or 6 with [HMn(CO)(5)] in THF afforded [U(Tren(TMS))(THF)(μ-OC)Mn(CO)(4)] (9); when these reactions were repeated in the presence of 1,2-dimethoxyethane (DME), the separated ion pair [U(Tren(TMS))(DME)][Mn(CO)(5)] (10) was isolated instead. Reaction of 5 with [HMn(CO)(5)] in toluene afforded [{U(Tren(TMS))(μ-OC)(2)Mn(CO)(3)}(2)] (11). Similarly, reaction of the cyclometalated complex [U{N(CH(2)CH(2)NSiMe(2)Bu(t))(2)(CH(2)CH(2)NSiMeBu(t)CH(2))}] with [HMn(CO)(5)] gave [{U(Tren(DMSB))(μ-OC)(2)Mn(CO)(3)}(2)] [12, Tren(DMSB) = N(CH(2)CH(2)NSiMe(2)Bu(t))(3)]. Attempts to prepare the manganocene derivative [U(Tren(TMS))MnCp(2)] from 7 and K[MnCp(2)] were unsuccessful and resulted in formation of [{U(Tren(TMS))}(2)(μ-O)] (13) and [MnCp(2)]. Complexes 3-13 have been characterized by X-ray crystallography, (1)H NMR spectroscopy, FTIR spectroscopy, Evans method magnetic moment, and CHN microanalyses.  相似文献   

4.
The monohapto neutral 2-(diphenylphosphino)aniline (PNH(2)) complexes [Au(C(6)F(5))(2)X(PNH(2))] (X = C(6)F(5) (1), Cl (2)) have been obtained from [Au(C(6)F(5))(3)(tht)] or [Au(C(6)F(5))(2)(micro-Cl)](2) and PNH(2), and the cationic [Au(C(6)F(5))(2)(PNH(2))]ClO(4) (3) has been similarly prepared from [Au(C(6)F(5))(2)(OEt(2))(2)]ClO(4) and PNH(2) or from 2 and AgClO(4). The neutral amido complex [Au(C(6)F(5))(2)(PNH)] (4) can be obtained by deprotonation of 3 with PPN(acac) (acac = acetylacetonate) or by treatment of the chloro complex 2 with Tl(acac). It reacts with [Ag(OClO(3))(PPh(3))] or [Au(OClO(3))(PPh(3))] to give the dinuclear species [Au(C(6)F(5))(2)[PNH(MPPh(3))]]ClO(4) (M = Ag (5), Au (6)). The latter can also be obtained by reaction of equimolar amounts of 3 and [Au(acac)(PPh(3))]; when the molar ratio of the same reagents is 1:2, the trinuclear cationic complex [Au(C(6)F(5))(2)[PN(AuPPh(3))(2)]]ClO(4) (7) is obtained. The crystal structures of complexes 2-4 and 7 have been established by X-ray crystallography; the last-mentioned displays an unusual Au(I)-Au(III) interaction.  相似文献   

5.
The reactions of [Et(4)N](3)[Sb{Fe(CO)(4)}(4)] (1) with RX (R = Me, Et, n-Pr; X = I) in MeCN form the monoalkylated antimony complexes [Et(4)N](2)[RSb{Fe(CO)(4)}(3)] (R = Me, 2; R = Et, 4; R = n-Pr, 6) and the dialkylated antimony clusters [Et(4)N][R(2)Sb{Fe(CO)(4)}(2)] (R = Me, 3; R = Et, 5; R = n-Pr, 7), respectively. When [Et(4)N](3)[Sb{Fe(CO)(4)}(4)] reacts with i-PrI, only the monoalkylated antimony complex [Et(4)N](2)[i-PrSb{Fe(CO)(4)}(3)] (8) is obtained. The mixed dialkylantimony complex [Et(4)N][MeEtSb{Fe(CO)(4)}(2)] (9) also can be synthesized from the reaction of 2 with EtI. While the reaction with Br(CH(2))(2)Br produces [Et(4)N](2)[BrSb{Fe(CO)(4)}(3)] (10), treatment with Cl(CH(2))(3)Br forms the monoalkylated product [Et(4)N](2)[Cl(CH(2))(3)Sb{Fe(CO)(4)}(3)] (11) and a dialkylated novel antimony-iron complex [Et(4)N][{&mgr;-(CH(2))(3)}Sb{Fe(CO)(4)}(3)] (12). On the other hand, the reaction with Br(CH(2))(4)Br forms the monoalkylated antimony product and the dialkylated antimony complex [Et(4)N][{&mgr;-(CH(2))(4)}Sb{Fe(CO)(4)}(2)] (13). Complexes 2-13 are characterized by spectroscopic methods or/and X-ray analyses. On the basis of these analyses, the core of the monoalkyl clusters consists of a central antimony atom tetrahedrally bonded to one alkyl group and three Fe(CO)(4) fragments and the dialkyl products are structurally similar to the monoalkyl clusters, with the central antimony bonded to two alkyl groups and two Fe(CO)(4) moieties in each case. The dialkyl complex 3 crystallizes in the monoclinic space group P2(1)/c with a = 13.014(8) ?, b = 11.527(8) ?, c = 17.085(5) ?, beta = 105.04(3) degrees, V = 2475(2) ?(3), and Z = 4. Crystals of 12 are orthorhombic, of space group Pbca, with a = 14.791(4) ?, b = 15.555(4) ?, c = 27.118(8) ?, V = 6239(3) ?(3), and Z = 8. The anion of cluster 12 exhibits a central antimony atom bonded to three Fe(CO)(4) fragments with a -(CH(2))(3)- group bridging between the Sb atom and one Fe(CO)(4) fragment. This paper discusses the details of the reactions of [Et(4)N](3)[Sb{Fe(CO)(4)}(4)] with a series of alkyl halides and dihalides. These reactions basically proceed via a novel double-alkylation pathway, and this facile methodology can as well provide a convenient route to a series of alkylated antimony-iron carbonyl clusters.  相似文献   

6.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful.  相似文献   

7.
Reactions of [Pt(PEt(3))(3)] (1) with the silanes HSiPh(3), HSiPh(2)Me and HSi(OEt)(3) led to the products of oxidative addition, cis-[Pt(H)(SiPh(3))(PEt(3))(2)] (2), cis-[Pt(H)(SiPh(2)Me)(PEt(3))(2)] (3), cis-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (cis-4) and trans-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (trans-4). The complexes cis-4 and trans-4 can also be generated by hydrogenolysis of (EtO)(3)SiSi(OEt)(3) in the presence of 1. Furthermore, the silyl compounds cis-4 and trans-4 react with B(C(6)F(5))(3) and CH(3)CN by hydride abstraction to give the cationic silyl complex trans-[Pt{Si(OEt)(3)}(NCCH(3))(PEt(3))(2)][HB(C(6)F(5))(3)] (8). In addition, the reactivity of the complexes cis-4, trans-4 and 8 towards alkenes and CO was studied using NMR experiments.  相似文献   

8.
The reactions of Na[C(5)(CN)(5)] (Na[1]) with group 11 phosphine complexes [(P)(n)MCl] (M = Cu, Ag, Au, P = Ph(3)P; M = Cu, P = dppe (Ph(2)PCH(2)CH(2)PPh(2))] give a range of compounds containing the pentacyanocyclopentadienide ligand, [C(5)(CN)(5)](-) (1). The new complexes [(Ph(3)P)(2)M{1}](2) [M = Cu (3); M = Ag (5)], [(Ph(3)P)(3)Ag{1}] (4), [(dppe)(3)Cu(2){1}(2)] (6) and [Au(PPh(3))(2)][1] (7) include the first complete series of group 11 complexes of any cyclopentadienide ligand to be structurally characterised.  相似文献   

9.
Reaction of 1,1-difluoroallene and tetrafluoroallene with a series of transition metal complex fragments yields the mononuclear allene complexes [CpMn(CO)(2)(allene)] (1), [(CO)(4)Fe(allene)] (2), [(Ph(3)P)(2)Pt(C(3)H(2)F(2))] (4), [Ir(PPh(3))(2)(C(3)H(2)F(2))(2)Cl] (5), and the dinuclear complexes [mu-eta(1)-eta(3)-C(3)H(2)F(2))Fe(2)(CO)(7)] (3), [Ir(PPh(3))(C(3)H(2)F(2))(2)Cl](2) (6), and [mu-eta(2)-eta(2)-C(3)H(2)F(2))(CpMo(CO)(2))(2)] (9), respectively. In attempts to synthesize cationic complexes of fluorinated allenes [CpFe(CO)(2)(C(CF(3))=CH(2))] (7a), [CpFe(CO)(2)(C(CF(3))=CF(2))] (7b) and [mu-I-(CpFe(CO)(2))(2)][B(C(6)H(3)-3,5-(CF(3))(2))(4)] were isolated. The spectroscopic and structural data of these complexes revealed that the 1,1-difluoroallene ligand is coordinated exclusively with the double bond containing the hydrogen-substituted carbon atom. 1,1-Difluoroallene and tetrafluoroallene proved to be powerful pi acceptor ligands.  相似文献   

10.
The reactions of [AuCl(THT)] (THT = tetrahydrothiophene) with 1 equiv of the group 14 diaminometalenes M(HMDS)(2) [M = Ge, Sn; HMDS = N(SiMe(3))(2)] lead to [Au{MCl(HMDS)(2)}(THT)] [M = Ge (1), Sn (2)], which contain a metalate(II) ligand that arises from insertion of the corresponding M(HMDS)(2) reagent into the Au-Cl bond of the gold(I) reagent. While compound 1 reacts with more Ge(HMDS)(2) to give the germanate-germylene derivative [Au{GeCl(HMDS)(2)}{Ge(HMDS)(2)}] (3), which results from substitution of Ge(HMDS)(2) for the THT ligand of 1, an analogous treatment of compound 2 with Sn(HMDS)(2) gives the stannate-stannylene derivative [Au{SnCl(HMDS)(2)}{Sn(HMDS)(2)(THT)}] (4), which has a THT ligand attached to the stannylene tin atom and which, in solution at room temperature, participates in a dynamic process that makes its two Sn(HMDS)(2) fragments equivalent (on the NMR time scale). A similar dynamic process has not been observed for the AuGe(2) compound 3 or for the AuSn(2) derivatives [Au{SnR(HMDS)(2)}{Sn(HMDS)(2)(THT)}] [R = Bu (5), HMDS (6)], which have been prepared by treating complex 4 with LiR. The structures of compounds 1 and 3-6 have been determined by X-ray diffraction.  相似文献   

11.
The reactions of molybdenum(0) and rhodium(I) olefin containing starting materials with the carbenoid group 13 metal ligator ligand GaR (R = Cp*, DDP; Cp* = pentamethylcyclopentadienyl, DDP = HC(CMeNC(6)H(3)-2,6-(i)Pr(2))(2)) were investigated and compared. Treatment of [Mo(η(4)-butadiene)(3)] with GaCp* under hydrogen atmosphere at 100 °C yields the homoleptic, hexa coordinated, and sterically crowded complex [Mo(GaCp*)(6)] (1) in good yields ≥50%. Compound 1 exhibits an unusual and high coordinated octahedral [MoGa(6)] core. Similarly, [Rh(GaCp*)(5)][CF(3)SO(3)] (2) and [Rh(GaCp*)(5)][BAr(F)] (3) (BAr(F) = B{C(6)H(3)(CF(3))(2)}(4)) are prepared by the reaction of GaCp* with the rhodium(I) compound [Rh(coe)(2)(CF(3)SO(3))](2) (coe = cyclooctene) and subsequent anion exchange in case of 3. Compound 2 features a trigonal bipyramidal [RhGa(5)] unit. In contrast, reaction of excess Ga(DDP) with [Rh(coe)(2)(CF(3)SO(3))](2) does not result in a high coordinated homoleptic complex but instead yields [(coe)(toluene)Rh{Ga(DDP)}(CF(3)SO(3))] (4). The common feature of 2 and 4 in the solid state structure is the presence of short CF(3)SO(2)O···Ga contacts involving the GaCp* or rather the Ga(DDP) ligand. Compounds 1, 2, and 4 have been fully characterized by single crystal X-ray diffraction, variable temperature (1)H and (13)C NMR spectroscopy, IR spectroscopy, mass spectrometry, as well as elemental analysis.  相似文献   

12.
Ultraviolet irradiation of [PPh(4)][closo-1-CB(8)H(9)] with [Re(2)(CO)(10)] in THF (tetrahydrofuran) at ambient temperature affords the dirhenacarborane anion [6,10-{Re(CO)(4)}-10-(micro-H)-6,6,6-(CO)(3)-closo-6,1-ReCB(8)H(8)]-, isolated as its [PPh(4)]+ salt (1). Further irradiation of 1 yields a second isomeric anion [6,10-{Re(CO)(4)}-6-(micro-H)-10,10,10-(CO)(3)-closo-10,1-ReCB(8)H(8)]- that was characterized as a [N(PPh(3))(2)]+ salt (2). Reaction of 1 with NOBF(4) produces the neutral dirhenacarborane compound [8,10-{Re(CO)(4)}-8,10-(micro-H)2-6,6-(CO)(2)-6-NO-closo-6,1-ReCB(8)H(7)] (3). Compounds 1-3 all consist of a central {closo-ReCB(8)} cluster with a second rhenium center which is exo-polyhedral. Attempts to substitute the carbonyl ligands of 3 with other donor ligands such as phosphines, isocyanides, or alkynes resulted in loss of the exo-polyhedral rhenium moiety and formation of a monorhenium anion, [6,6-(CO)(2)-6-NO-closo-6,1-ReCB(8)H(9)]-, isolated as its [N(PPh(3))(2)]+ salt (4). The heterometallic dimetallacarborane species, [6,7,10-{Cu(PPh(3))}-7,10-(micro-H)2-6,6-(CO)(2)-6-NO-closo-6,1-ReCB(8)H(7)] (5) and [6,7-{Au(PPh(3))}-7-(micro-H)-6,6-(CO)(2)-6-NO-closo-6,1-ReCB(8)H(8)] (6) were formed from reactions of 4 with {Cu(PPh(3))}+ and {Au(PPh(3))}+, respectively. Similarly, reaction of 4 with {Ir(CO)(PPh(3))(2)}+ afforded two products, [6,10-{Ir(micro-PPh(2))(Ph)(CO)(PPh(3))}-10-(micro-H)-6-CO-6-NO-closo-6,1-ReCB(8)H(8)] (7) and [6,9,10-{Ir(micro-PPh(2))(H)(PPh(3))}-9-(micro-H)-6-CO-6-NO-10-Ph-closo-6,1-ReCB(8)H(8)] (8). The solid-state structures of compounds 1-8 were all unequivocally established by single-crystal X-ray diffraction experiments.  相似文献   

13.
A new gold(ii) species [(CF(3))(4)Au(2)(C(5)H(5)N)(2)] with a very short unsupported Au-Au bond (250.62(9) pm) was generated by photo irradiation of a silver aurate, [Ag(Py)(2)][Au(CF(3))(2)], unambiguously characterized by (19)F and (109)Ag NMR studies.  相似文献   

14.
Five silver(I) double salts containing embedded acetylenediide, [Ag([12]crown-4)(2)][Ag(10)(C(2))(CF(3)CO(2))(9)([12]crown-4)(2)(H(2)O)(3)] x H(2)O (2), [Ag(2)C(2) x 5 AgCF(3)CO(2) x (benzo[15]crown-5) x 2 H(2)O] x 0.5 H(2)O (3), [Ag(4)([18]crown-6)(4)(H(2)O)(3)][Ag(18)(C(2))(3)(CF(3)CO(2))(16)(H(2)O)(2.5)] x 2.5 H(2)O (4), [Ag(2)C(2) x 6 AgC(2)F(5)CO(2) x 2([15]crown-5)](2) (5), and [(Ag(2)C(2))(2) x (AgC(2)F(5)CO(2))(9) x ([18]crown-6)(2) x (H(2)O)(3.5)] x H(2)O (6), have been isolated by varying the types of crown ethers and anions employed. Single-crystal X-ray analysis has shown that complex 2 is composed of winding anionic chains with sandwiched [Ag([12]crown-4)(2)](+) ions accommodated in the concave cavities between them. In 3, silver(I) double cages each sandwiched by a couple of benzo[15]crown-5 ligands are linked by [Ag(2)(CF(3)CO(2))(2)] bridges to form a one-dimensional structure. For 4, an anionic silver column is generated through fusion of two kinds of silver polyhedra (triangulated dodecahedron and bicapped trigonal antiprism), and the charge balance is provided by aqua-ligated [Ag([18]crown-6)](+) ions. Complex 5 is a centrosymmetric hexadecanuclear supermolecule composed of two [(eta(5)-[15]crown-5)(2)(C(2)@Ag(7))(mu-C(2)F(5)CO(2))(5)] moieties connected through a [Ag(2)(C(2)F(5)CO(2))(2)] bridge. Compound 6 is a discrete supermolecule containing an asymmetric (C(2))(2)@Ag(13) cluster core capped by two [18]crown-6 ligands in mu(3)-eta(5) and mu(4)-eta(6) ligation modes.  相似文献   

15.
Complex {[Hg(C(6)F(5))(2)][Au(C(6)F(5))(PMe(3))](2)}(n)2 displays unsupported Au(I)···Hg(II) and Au(I)···Au(I) interactions. Its crystal structure displays a polymeric -(Au-Hg-Au-Au-Hg-Au)(n)- disposition. Ab initio calculations show very strong Au(I)···Hg(II) and Au(I)···Au(I) closed-shell interactions of -73.3 kJ mol(-1) and -57.0 kJ mol(-1), respectively, which have a dispersive (van der Waals) nature and are strengthened by large relativistic effects (>20%).  相似文献   

16.
The generation of heterobimetallic complexes with two or three bridging sulfido ligands from mononuclear tris(sulfido) complex of tungsten [Et(4)N][(Me(2)Tp)WS(3)] (1; Me(2)Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate) and organometallic precursors is reported. Treatment of 1 with stoichiometric amounts of metal complexes such as [M(PPh(3))(4)] (M = Pt, Pd), [(PtMe(3))(4)(micro(3)-I)(4)], [M(cod)(PPh(3))(2)][PF(6)] (M = Ir, Rh; cod = 1,5-cyclooctadiene), [Rh(cod)(dppe)][PF(6)] (dppe = Ph(2)PCH(2)CH(2)PPh(2)), [CpIr(MeCN)(3)][PF(6)](2) (Cp = eta(5)-C(5)Me(5)), [CpRu(MeCN)(3)][PF(6)], and [M(CO)(3)(MeCN)(3)] (M = Mo, W) in MeCN or MeCN-THF at room temperature afforded either the doubly bridged complexes [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)M(PPh(3))] (M = Pt (3), Pd (4)), [(Me(2)Tp)W(=S)(micro-S)(2)M(cod)] (M = Ir, Rh (7)), [(Me(2)Tp)W(=S)(micro-S)(2)Rh(dppe)], [(Me(2)Tp)W(=S)(micro-S)(2)RuCp] (10), and [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)W(CO)(3)] (12) or the triply bridged complexes including [(Me(2)Tp)W(micro-S)(3)PtMe(3)] (5), [(Me(2)Tp)W(micro-S)(3)IrCp][PF(6)] (9), and [Et(4)N][(Me(2)Tp)W(micro-S)(3)Mo(CO)(3)] (11), depending on the nature of the incorporated metal fragment. The X-ray analyses have been undertaken to clarify the detailed structures of 3-5, 7, and 9-12.  相似文献   

17.
Insertion of MeO(2)C-C[triple bond]C-CO(2)Me (DMAD) into the Pd-C bond of the heterodimetallic complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d(dmba-C)] (2) (dppm = Ph(2)PCH(2)PPh(2), dmba-C = metallated dimethylbenzylamine) and [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d(8-mq-C,N)] (3) (8-mq-C,N = cyclometallated 8-methylquinoline) yielded the sigma-alkenyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (7) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)[double bond, length as m-dash]C(CO(2)Me)(CH(2)C(9)H(6)N)}] (8), respectively. The latter afforded the adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(CH(2)C(9)H(6)N)}(CNBu(t))] (9) upon reaction with 1 equiv. of Bu(t)NC. The heterodinuclear sigma-butadienyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph=C(Ph)C(CO(2)Me)=(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (11) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph)=C(CO(2)Et)C(Ph)=C(CO(2)Et)(CH(2)C(9)H(6)N)}] (13) have been obtained by reaction of the metallate K[Fe{Si(OMe)(3)}(CO)(3)(dppm-P)] (dppm = Ph(2)PCH(2)PPh(2)) with [P[upper bond 1 start]dCl{C(Ph)=C(Ph)C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)N[upper bond 1 end]Me(2))}] or [P[upper bond 1 start]dCl{C(Ph)=C(CO(2)Et)C(Ph)=(CO(2)Et)}(CH(2)C(9)H(6)N[upper bond 1 end])], respectively. Monoinsertion of various organic isocyanides RNC into the Pd-C bond of 2 and 3 afforded the corresponding heterometallic iminoacyl complexes. In the case of complexes [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end][upper bond 1 start]d{C=(NR)(CH(2)C(9)H(6)N[upper bond 1 end])}] (15a R = Ph, 15b R = xylyl), a static six-membered C,N chelate is formed at the Pd centre, in contrast to the situation in [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=NR)(o-C(6)H(4)CH(2)NMe(2))}] (14a R = o-anisyl, 14b R = 2,6-xylyl) where formation of a mu-eta(2)-Si-O bridge is preferred over NMe(2) coordination. The outcome of the reaction of the dimetallic alkyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe] with RNC depends both on the stoichiometry and the electronic donor properties of the isocyanide employed for the migratory insertion process. In the case of o-anisylisocyanide, the iminoacyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=N-o-anisyl)Me}] (16) results from the reaction in a 1 : 1 ratio. Addition of three equiv. of o-anisylisocyanide affords the tris(insertion) product [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}] (18). After addition of a fourth equivalent of o-anisylNC, exclusive formation of the isocyanide adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}(CN-o-anisyl)] (19) was spectroscopically evidenced. In the complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-C(6)H(4)COCH(2))](2)Me}] (20), the sigma-bound diazabutadienyl unit is part of a 12-membered organic macrocyle which results from bis(insertion) of 1,2-bis(2-isocyanophenoxy)ethane into the Pd-Me bond of the precursor complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe]. In contrast, addition of two equivalents of tert-butylisocyanide to a solution of the latter afforded [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]Fe(mu-dppm)P[upper bond 1 end]d{C(=NBu(t))Me}(CNBu(t))] (21) in which both a terminal and an inserted isocyanide ligand are coordinated to the Pd centre. In all cases, there was no evidence for competing CO substitution at the Fe(CO)(3) fragment by RNC. The molecular structures of the insertion products 8 x CH(2)Cl(2) and 16 x CH(2)Cl(2) have been determined by X-ray diffraction.  相似文献   

18.
Crystallographic and luminescence studies on salts of the two-coordinate carbene cation, [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)](+), demonstrate the ability of the cation to exist in three different states of aggregation. In colorless, non-luminescent [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)]Cl the cation crystallizes as a monomer with the nearest gold(i) center 6.7890(11) A away. Colorless, luminescent [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)]AsF(6) forms dimers with an AuAu separation of 3.1288(4) A. These dimers form weakly associated extended chains of cations with additional AuAu separations of 3.6625(5) A. [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)]PF(6) is isostructural. Yellow, luminescent [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)](3)(AsF(6))(2)Cl.0.5(H(2)O)(2) and [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)](3)(PF(6))(2)Cl.0.5(H(2)O)(2) form trimers that further aggregate into extended chains with rather short AuAu separations of 3.1301(14) A, 3.1569(14) A and 3.1415(14) A. Absorption, emission and excitation spectra are reported for these salts. The excitation and emission results from the interactions between the gold centers and involves transitions between the filled d(z)((2)) band and the empty p(z) bands with the z axis pointing along the chain of cations.  相似文献   

19.
Crystalline materials have been isolated and characterized from mixing the silver carborane salts Ag(CB(11)H(12)) or Ag[Co(C(2)B(9)H(11))(2)] with nitrile ligands, either terminal acetonitrile or potentially bridging alkanedinitriles. Most of the complexes showed B-H...Ag interactions between the silver center and carborane anion. [Ag(acetonitrile)(2)(CB(11)H(12))] has a hexagonal network structure. [Ag(malonitrile)(2)(CB(11)H(12))] is a discrete dimeric complex, while [Ag(4)(succinonitrile)(5)(CB(11)H(12))(4)], [Ag(glutaronitrile)(2)][Co(C(2)B(9)H(12))(2)], and [Ag(glutaronitrile)[Co(C(2)B(9)H(11))(2)]] all show coordination chain structures. The carborane anions in [Ag(adiponitrile)[Co(C(2)B(9)H(11))(2)]] bridge between Ag centers to give a 3D CdSO(4)-related coordination polymer. The structure of [Ag(malonitrile)(2)](BF(4)) was also determined to have an unusual chiral diamondoid structure with a skewed 2-fold interpenetration.  相似文献   

20.
Inventing new wheels: reaction of [M(3)(CO)(12) ] (M=Ru, Os) with 4-RC(6)H(4)SH afforded [{M(S-4-RC(6)H(4))(2)(CO)(2)}(8)] (R=H; I) or [{M(S-4-RC(6)H(4))(2)(CO)(2)}(6)] (R=Me, iPr; II; see scheme), all of which have been structurally characterized. The octamers I are unique metal molecular wheels featuring skew-edge-shared octahedra with a central planar M(8) octagon. [{Ru(S-4-iPrC(6)H(4))(2)(CO)(2)}(6)] selectively binds a Cu(+) or Ag(+) ion to form [M'{Ru(S(4-iPr-C(6)H(4)))(2)(CO)(2)}(6)](+) (III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号