首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By employing broadband femtosecond Kerr-gated time-resolved fluorescence (KTRF) and transient absorption (TA) techniques, we report the first (to our knowledge) femtosecond combined time- and wavelength-resolved study on an ultraviolet-excited nucleoside and a single-stranded oligonucleotide (namely adenosine (Ado) and single-stranded adenine oligomer (dA)(20)) in aqueous solution. With the advantages of the ultrafast time resolution, the broad spectral and temporal probe window, and a high sensitivity, our KTRF and TA results enable the real time monitoring and spectral characterization of the excited-state relaxation processes of the Ado nucleoside and (dA)(20) oligonucleotide investigated. The temporal evolution of the 267 nm excited Ado KTRF spectra indicates there are two emitting components with lifetimes of approximately 0.13 ps and approximately 0.45 ps associated with the L(a) and L(b) pipi* excited states, respectively. These Ado results reveal no obvious evidence for the involvement of the npi* state along the irradiative internal conversion pathway. A distinct mechanism involving only the two pipi* states has been proposed for the ultrafast Ado deactivation dynamics in aqueous solution. The time dependence of the 267 nm excited (dA)(20) KTRF and TA spectra reveals temporal evolution from an ultrafast "A-like" state (with a approximately 0.39 ps decay time) to a relatively long-lived E(1) "excimer" (approximately 4.3 ps decay time) and an E(2) "excimer-like" (approximately 182 ps decay time) state. The "A-like" state has a spectral character closely resembling the excited state of Ado. Comparison of the spectral evolution between the results for Ado and (dA)(20) provides unequivocal evidence for the local excitation character of the initially photoexcited (dA)(20). The rapid transformation of the locally excited (dA)(20) component into the delocalized E(1) "excimer" state which then further evolves into the E(2) "excimer-like" state indicates that base stacking has a high ability to modify the excited-state deactivation pathway. This modification appears to occur by suppressing the internal conversion pathway of an individually excited base component where the stacking interaction mediates efficient interbase energy transfer and promotes formation of the collective excited states. This feature of the local excitation that is subsequently followed by rapid energy delocalization into nearby bases may occur in many base multimer systems. Our results provide an important new contribution to better understanding DNA photophysics.  相似文献   

2.
Abstract— The luminescence emission of singlet molecular oxygen (1O2) generated by bacteriopheophytin a, a near-infrared-emitting photosensitizer, was measured using a new high-sensitivity spectrometer system for time- and spectral-resolved near-infrared detection. The instrument uses a low energy pulsed nitrogen laser (40 μJ per pulse) to excite the photosensitizer optically and is capable of a time resolution of 40 ns per data point and an instrument response function of 350 ns FWHM (full width at half maximum). The use of a low-energy (and relatively low cost) source provides sufficient system sensitivity to measure time-resolved spectra in the near infrared with high spectral and temporal resolution. The simultaneous detection, with high accuracy and repeatability, of both the temporal and spectral dependence of the photoprocesses of 1O2 generation, especially with near-infrared-emitting photosensitizers, may further stimulate the current intensive investigations concerning the activity of 1O2 to biomolecules.  相似文献   

3.
Abstract— An instrument is described that has the capability of acquiring both the spectrum and lifetime(s) of fluorescent species dispersed in biological cells. It operates at the single cell (or organelle) level and the spectral and temporal data collection can be performed simultaneously. A synchronously pumped, mode-locked dye laser provides the excitation light, time-correlated single-photon counting is used for lifetime measurements, and a diode array spectrograph is used for spectral work. Spatial resolution of sub-micrometer is obtained using a fluorescence microscope. The temporal resolution is better than 300 ps and wavelength resolution is less than 1 nm per channel. The instrument has been used for observing the spectral and temporal characteristics of hematoporphyrin in mouse myeloma cells.  相似文献   

4.
Ultrafast spectroscopy is dominated by time domain methods such as pump-probe and, more recently, 2D-IR spectroscopies. In this paper, we demonstrate that a mixed frequency/time domain ultrafast four wave mixing (FWM) approach not only provides similar capabilities, but it also provides optical analogues of multiple- and zero-quantum heteronuclear nuclear magnetic resonance (NMR). The method requires phase coherence between the excitation pulses only over the dephasing time of the coherences. It uses twelve coherence pathways that include four with populations, four with zero-quantum coherences, and four with double-quantum coherences. Each pathway provides different capabilities. The population pathways correspond to those of two-dimensional (2D) time domain spectroscopies, while the double- and zero-quantum coherence pathways access the coherent dynamics of coupled quantum states. The three spectral and two temporal dimensions enable the isolation and characterization of the spectral correlations between different vibrational and/or electronic states, coherence and population relaxation rates, and coupling strengths. Quantum-level interference between the direct and free-induction decay components gives a spectral resolution that exceeds that of the excitation pulses. Appropriate parameter choices allow isolation of individual coherence pathways. The mixed frequency/time domain approach allows one to access any set of quantum states with coherent multidimensional spectroscopy.  相似文献   

5.
Coherent multidimensional spectroscopy performed in the mixed frequency/time domain exhibits both temporal and spectral quantum beating when two quantum states are simultaneously excited. The excitation of both quantum states can occur because either the spectral width of the states or the excitation pulse exceeds the frequency separation of the quantum states. The quantum beating appears as a line that broadens and splits into two peaks and then recombines as the time delay between excitation pulses increases. The splitting depends on the spectral width of the excitation pulses. We observe the spectral quantum beating between the two nearly degenerate asymmetric carbonyl stretch modes in a nickel tricarbonyl chelate using the nonrephasing, ground state bleaching coherence pathway in triply vibrationally enhanced four-wave mixing as the time delay between the first two excitation pulses changes.  相似文献   

6.
The problem of vibrational wave packet dynamics in the system of two electronic states of a diatomic molecule, where the states are coupled by infinitely short light pulses, is solved. The electronic states were modeled by shifted harmonic oscillators with different frequencies. Exact expressions for the probability densities of the wave packets in the ground and excited states were derived. The spatial, spectral, and temporal characteristics of the wave packets, namely, the range of motion, spatial width, mean energy, spectral width (the mean number of vibrational states in a wave packet), and the autocorrelation function, were calculated as functions of the molecular parameters (the frequency ratio and the distance between the potential minima) and of the delay time between the light pulses. The possibility of controlling the mean energy and spectral width of the wave packets in the ground electronic state by varying the delay time is considered. It was shown that "squeezed" wave packets can be prepared in the ground electronic state if the upper electronic state is shallow.  相似文献   

7.
The temporal behavior of the spectral emission from coumarin 102 in several liquids is studied as a function of temperature using picosecond techniques. Kinetics of the disappearance of a blue edge emission and the formation of a red edge emission are related. Strong correlations with viscosity suggest that the reorientation time is a key parameter.  相似文献   

8.
S-branch N(2)-H(2) Raman linewidths have been measured in the temperature region 294-1466 K using time-resolved dual-broadband picosecond pure rotational coherent anti-Stokes Raman spectroscopy (RCARS). Data are extracted by mapping the dephasing rates of the CARS signal temporal decay. The J-dependent coherence decays are detected in the time domain by following the individual spectral lines as a function of probe delay. The linewidth data set was employed in spectral fits of N(2) RCARS spectra recorded in binary mixtures of N(2) and H(2) at calibrated temperature conditions up to 661 K using a standard nanosecond RCARS setup. In this region, the set shows a deviation of less than 2% in comparison with thermocouples. The results provide useful knowledge for the applicability of N(2) CARS thermometry on the fuel-side of H(2) diffusion flames.  相似文献   

9.
凌云  汤儆  刘国坤  宗铖 《电化学》2019,25(6):731
对硝基苯硫酚是表面增强拉曼光谱研究中最常用的探针分子之一,对硝基苯硫酚在电极表面电化学还原反应的研究有助于对芳香族硝基化合物还原机理的认识. 本文应用暂态电化学-表面增强拉曼光谱技术,研究了对硝基苯硫酚在循环伏安和计时电流法过程中的表面增强拉曼光谱. 结果表明,实验实现了完全与电化学检测时间分辨率同步的表面增强拉曼光谱检测,以最快5毫秒的时间分辨率研究了对硝基苯硫酚分子在金电极表面的还原过程. 结果分析推测其此反应过程极快,在5毫秒的时间分辨率下仍难以捕获其中间物种. 本研究为人们更深层次研究和认识硝基苯类化合物电化学还原过程提供了参考和方向.  相似文献   

10.
We describe a simple multiplex vibrational spectroscopic imaging technique based on employing chirped femtosecond pulses in a coherent anti-Stokes Raman scattering (CARS) scheme. Overlap of a femtosecond Stokes pulse with chirped pump/probe pulses introduces a temporal gate that defines the spectral resolution of the technique, allowing single-shot acquisition of high spectral resolution CARS spectra over a several hundred wavenumber bandwidth. Simulated chirped (c-) CARS spectra match the experimental results, quantifying the dependence of the high spectral resolution on the properties of the chirped pulse. c-CARS spectromicroscopy offers promise as a simple and generally applicable high spatial resolution, chemically specific imaging technique for studying complex biological and materials samples.  相似文献   

11.
In this study, the dependence of sample size and light intensity on the fluorescence intermittency of semiconductor nanorods is investigated. We present a model with diffusion-controlled electron-transfer reactions involving anomalous diffusion in energy configuration space. This model leads to a general formula t(-m) exp[-(Gammat)n] for the temporal behavior of blinking statistics, where m and n are related to the time dependence of the spectral diffusion. We reanalyze the experimental data of the long-time bending tail of CdSe nanorods and elucidate the size effects of the bending rates and activation energy.  相似文献   

12.
A Nd:YAG laser pulse was focused, in air or on a Cu target, between the plates of a planar charged capacitor. The plasma generates a transient redistribution of the electrical charges on the plates that can be easily measured as a voltage drop across a resistor connected to the ground plate. At the same time, the Stark broadening of the Hα spectral line (656.3 nm) obtained from the optical emission spectrum of the plasma was measured. In this work, we show that the peak of electrical signal measured on the resistor is, in the energy range of our laser (30 mJ to 220 mJ) and at time delays typical of Laser-Induced Breakdown Spectroscopy applications (500–5000 ns), univocally related to the temporal evolution of the Stark broadening of the Hα line. Therefore, after a proper calibration depending on the material and the experimental geometry, the peak of the electrical signal can be used to predict the temporal evolution of the electron density of the generated plasma.  相似文献   

13.
报道了一种基于金银合金薄膜的宽光谱表面等离子体共振成像(SPRI)传感器,该传感器能够对吸附在薄膜局部或整个表面上的生化分子进行原位定量检测,而且与常规的金膜SPRI传感器相比,检测成本更低,检测灵敏度更高。利用质量比1:1的金银合金溅射靶在玻璃基板上淀积了厚约50 nm的均匀的金银合金薄膜。利用实验室自制的Krestchmann结构多功能平台在不同入射角下测试了金银合金薄膜被纯水覆盖后的SPR光谱和SPR彩色图像。基于色相算法计算获得了每个SPR彩像的二维色相分布及其平均色相,从而使得宽光谱SPRI传感器能够利用平均色相作为灵敏度参数进行定量检测。实验确定了平均色相对溶液折射率(RI)变化和分子吸附最为敏感的光谱区间是595–610 nm之间。在这个窄光谱范围内,平均色相与共振波长呈线性关系,其斜率为?hue/?λR=7.52 nm~(-1),这意味着基于色相的RI灵敏度是基于共振波长的RI灵敏度的7.52倍,这一结论已被实验证明。将SPRI传感器的起始共振波长设定在色相敏感光谱区间内之后,实验测得基于色相的RI灵敏度为S=29879 RIU~(-1),比在相同条件下测得的金膜SPRI的灵敏度高8倍。利用时间分辨宽光谱SPRI方法实时监测了牛血清白蛋白(BSA)分子在金银合金薄膜表面的非特异性吸附,从实验测得的平均色相随时间的变化曲线可知BSA吸附达到平衡所需时间约15 min。研究结果表明,基于金银合金薄膜的SPRI传感器具有动态定量检测蛋白质分子吸附过程的功能。  相似文献   

14.
The dynamics of the excited-state intramolecular proton transfer of 10-hydroxybenzo[h]quinoline (10-HBQ) and the associated coherent nuclear motion were investigated in solution by femtosecond absorption spectroscopy. Sub-picosecond transient absorption measurements revealed spectral features of the stimulated emission and absorption of the keto excited state (the product of the reaction). The stimulated emission band appeared in the 600-800-nm region, corresponding to the wavelength region of the steady-state keto fluorescence. It showed successive temporal changes with time constants of 350 fs and 8.3 ps and then disappeared with the lifetime of the keto excited state (260 ps). The spectral feature of the stimulated emission changed in the 350-fs dynamics, which was likely assignable to the intramolecular vibrational energy redistribution in the keto excited state. The 8.3-ps change caused a spectral blue shift and was attributed to the vibrational cooling process. The excited-state absorption was observed in the 400-600-nm region, and it also showed temporal changes characterized by the 350-fs and 8.3-ps components. To examine the coherent nuclear dynamics (nuclear wavepacket motion) in excited-state 10-HBQ, we carried out pump-probe measurements of the stimulated emission and absorption signals with time resolution as good as 27 fs. The obtained data showed substantially modulated signals due to the excited-state vibrational coherence up to a delay time of several picoseconds after photoexcitation. This means that the vibrational coherence created by photoexcitation in the enol excited state is transferred to the product. Fourier transform analysis indicated that four frequency components in the 200-700-cm(-1) region contribute to the oscillatory signal, corresponding to the coherent nuclear motions in excited-state 10-HBQ. Especially, the lowest-frequency mode at 242 cm(-1) is dephased significantly faster than the other three modes. This observation was regarded as a manifestation that the nuclear motion of the 242-cm(-1) mode is correlated with the structural change of the molecule associated with the reaction (the reaction coordinate). The 242-cm(-1) mode observed in excited-state 10-HBQ was assigned to a vibration corresponding to the ground-state vibration at 243 cm(-1) by referring to the results of resonance Raman measurements and density functional calculations. It was found that the nuclear motion of this lowest-frequency mode involves a large displacement of the OH group toward the nitrogen site as well as in-plane skeletal deformation that assists the oxygen and nitrogen atoms to come closer to each other. We discuss the importance of the nuclear wavepacket motion on a multidimensional potential-energy surface including the vibrational coordinate of the low-frequency modes.  相似文献   

15.
提出一种以乙酸镁和乙酸钠为原料合成四苯基卟啉镁(MgTPP)的新方法, 合成样品以柱层析法进行分离纯化. 分离产物经UV-Vis、1H-NMR、MALDI-TOF-MS(基质辅助激光解吸电离飞行时间质谱)等技术表征, 确定为MgTPP. UV-Vis光谱分析结果表明, 四苯基卟啉镁的Soret 吸收带为424 nm, Q 吸收带为563 nm 和602 nm. 此外, 光照对MgTPP的二氯甲烷溶液光谱性质的影响结果表明, 经光照射后MgTPP的UV-Vis光谱的Soret吸收带吸收强度明显降低, 同时, 经550 nm的光激发产生的荧光有明显的猝灭. 对光照后的MgTPP样品进行MALDI-TOF-MS分析, 发现有新的质核比(m/z)出现, 其为668, 这一结果表明, 在光照条件下, MgTPP分子可能与氧分子发生光化学作用, 形成MgTPP与氧的复合物MgTPP-O2.  相似文献   

16.
Femtosecond stimulated Raman scattering (FSRS) spectroscopy is a powerful pump–probe technique that can track electronic and vibrational dynamics with high spectral and temporal resolution. The investigation of extremely short‐lived species, however, implies deciphering complex signals and is ultimately hampered by unwanted nonlinear effects once the time resolution limit is approached and the pulses overlap temporally. Using the loop diagrams formalism we calculate the fifth‐order response of a model system and address the limiting case where the relevant dynamics timescale is comparable to the pump–pulse duration and, consequently, the pump and the probe overlap temporally. We find that in this regime, additional diagrams that do not contribute for temporally well separated pulses need to be taken into account, giving rise to new time‐dependent features, even in the absence of photoinduced dynamics and for negative delays.  相似文献   

17.
Laser-induced breakdown spectroscopy (LIBS) has been used to map the distribution of particulate matter inside the plume created by laser ablation of a brass target. The spatial density distribution of the different components of the plume was determined in an attempt to reveal the mechanism of fractionation in the process of the laser ablation. In this experiment two Nd:YAG pulsed lasers were used. The first beam was focused on the target to generate a plume after breakdown of the surface. The second laser was focused on the plume and generated the second breakdown. The composition of the region probed by the second beam was determined by analyzing the spectral emission from the second breakdown. By scanning the probe time and position, the temporal and spatial evolution of the laser ablative plume could be discovered. Spatial and temporal fractionation was observed in brass plume.  相似文献   

18.
2D NMR relies on monitoring systematic changes in the phases incurred by spin coherences as a function of an encoding time t(1), whose value changes over the course of independent experiments. The intrinsic multiscan nature of such protocols implies that resistive and/or hybrid magnets, capable of delivering the highest magnetic field strengths but possessing poor temporal stabilities, become unsuitable for 2D NMR acquisitions. It is here shown with a series of homo- and hetero-nuclear examples that such limitations can be bypassed using recently proposed 2D "ultrafast" acquisition schemes, which correlate interactions along all spectral dimensions within a single scan.  相似文献   

19.
Single fluorophores and single-pair fluorescence resonance energy transfer were studied with a new confocal fluorescence microscope that allows, for the first time, the wavelength and emission time of each detected photon to be simultaneously measured with single molecule sensitivity. In this apparatus, the photons collected from the sample are imaged through a dispersive optical system onto a time and position sensitive photon detector. For each detected photon the detection system records its wavelength, its emission time relative to the excitation pulse, and its absolute emission time. A histogram over many photons can generate a full fluorescence spectrum and correlated decay plot for a single molecule for any time interval. At the single molecule level, this approach makes possible entirely new types of temporal and spectral correlation spectroscopies. This paper presents our initial results on simultaneous time- and wavelength-resolved fluorescence measurements of single rhodamine 6G (R6G), tetramethylrhodamine (TMR), and Cy3 molecules embedded in thin films of poly(methyl methacrylate) (PMMA), and of single-pair fluorescence resonance energy transfer between two Alexa fluorophores spaced apart by a short polyproline peptide.  相似文献   

20.
W. Fuss 《Chemical physics》1983,76(3):343-348
It is shown that collisionless vibrational relaxation is associated with homogeneous spectral broadening. A relaxation time constant exists only if several states are contained within the homogeneous width. Transitions to high vibrational levels are usually associated with inhomogeneous spectra. Under customary conditions of narrow-band optical excitation, only a fraction of the inhomogeneous width is excited. This fraction as well as the time scale of the temporal evolution depend on external parameters like pulse length and intensity. From published measurements of absorption with long and short pulses, evidence is deduced against any importance of collisionless relaxation in infrared multiphoton excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号