首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high-pressure angle-dispersive X-ray diffraction experiments on the iron-based superconductor Nd(O0.88F0.12)FeAs were performed up to 32.7 GPa at room temperature. An isostructural phase transition starts at approximately 10 GPa. When pressure is higher than 13.5 GPa, Nd(O0.88F0.12)FeAs completely transforms to a high-pressure phase, which remains the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure phase. The ambient conditions isothermal bulk moduli B0 are derived as 102(2) and 245(9) GPa for the low-pressure phase and high-pressure phase, respectively. The structure analysis based on the Rietveld refinement methods shows the difference of pressure dependence of the Fe-As and Nd-(O, F) bonding distances, as well as As-Fe-As and Nd-(O, F)-Nd angles between the low-pressure phase and high-pressure phase.  相似文献   

2.
The monoclinic perovskite BiCo(1-x) Fe(x) O(3) (x≈0.7) undergoes a second-order structural transition from tetragonal to monoclinic, which is accompanied by a rotation of the polarization vector from the [001] to [111] directions of a pseudo cubic cell. The crystal structure, determined by electron diffraction and powder synchrotron X-ray diffraction, was the same as that of Pb(Ti(1-x) Zr(x) )O(3) at the morphotropic phase boundary.  相似文献   

3.
The topochemical deintercalation of Na(+) ions from solid NaFeAs at room temperature in THF with iodine yields the superconducting phase Na(1-y)Fe(2-x)As(2) (T(c) ≈ 11 K). This metastable iron arsenide decomposes at 120 °C and is not accessible by high-temperature solid-state synthesis. X-ray powder diffraction confirms the ThCr(2)Si(2)-type structure, but reveals very small coherently scattering domains with a mean composition Na(0.9(2))Fe(1.7(1))As(2). HRTEM investigations show crystalline as well as strongly distorted areas with planar defects. The latter are probably due to sodium loss and disorder which is also detected by (23)Na solid state NMR. The (57)Fe-M?ssbauer spectrum of Na(1-y)Fe(2-x)As(2) shows one type of iron atoms in tetrahedral coordination. All results point to one crystallographic phase with very small domains due to fluctuations of the chemical composition. From electronic reasons we suggest the superconducting phase is presumably NaFe(2)As(2) in the ordered fractions of the sample.  相似文献   

4.
The tetragonal compound Bi2CuO4 was investigated at high pressures by using in situ Raman scattering and X-ray diffraction (XRD) methods. A pressure-induced structural transition started at 20 GPa and completed at ∼37 GPa was found. The high pressure phase is in orthorhombic symmetry. Raman and XRD measurements revealed that the above phase transition is reversible.  相似文献   

5.
The newly discovered superconductor FeSe(1-x) (x approximately 0.08, T(c)(onset) approximately 13.5 K at ambient pressure rising to 27 K at 1.48 GPa) exhibits a structural phase transition from tetragonal to orthorhombic below 70 K at ambient pressure-the crystal structure in the superconducting state shows remarkable similarities to that of the REFeAsO(1-x)F(x) (RE = rare earth) superconductors.  相似文献   

6.
We have studied CaWO4 under compression using Ne as pressure-transmitting medium at room temperature by means of synchrotron X-ray powder diffraction. We have found that CaWO4 beyond 8.8 GPa transforms from its low-pressure tetragonal structure (scheelite) into a monoclinic structure (fergusonite). The high-pressure phase remains stable up to 28 GPa and the low-pressure phase is totally recovered after full decompression. The pressure dependence of the unit-cell parameters, as well as the pressure–volume equation of state, has been determined for both phases. Compared with previous studies, we found in our quasi-hydrostatic experiments a different behavior for the unit-cell parameters of the fergusonite phase and a different transition pressure. These facts suggest that deviatoric stresses influence on the high-pressure structural behavior of CaWO4 as previously found in related compounds. The reported experiments also provide information on the pressure dependence of interatomic bond distances, shedding light on the transition mechanisms.  相似文献   

7.
We synthesized two high-pressure polymorphs PbNiO(3) with different structures, a perovskite-type and a LiNbO(3)-type structure, and investigated their formation behavior, detailed structure, structural transformation, thermal stability, valence state of cations, and magnetic and electronic properties. A perovskite-type PbNiO(3) synthesized at 800 °C under a pressure of 3 GPa crystallizes as an orthorhombic GdFeO(3)-type structure with a space group Pnma. The reaction under high pressure was monitored by an in situ energy dispersive X-ray diffraction experiment, which revealed that a perovskit-type phase was formed even at 400 °C under 3 GPa. The obtained perovskite-type phase irreversibly transforms to a LiNbO(3)-type phase with an acentric space group R3c by heat treatment at ambient pressure. The Rietveld structural refinement using synchrotron X-ray diffraction data and the XPS measurement for both the perovskite- and the LiNbO(3)-type phases reveal that both phases possess the valence state of Pb(4+)Ni(2+)O(3). Perovskite-type PbNiO(3) is the first example of the Pb(4+)M(2+)O(3) series, and the first example of the perovskite containing a tetravalent A-site cation without lone pair electrons. The magnetic susceptibility measurement shows that the perovskite- and LiNbO(3)-type PbNiO(3) undergo antiferromagnetic transition at 225 and 205 K, respectively. Both the perovskite- and LiNbO(3)-type phases exhibit semiconducting behavior.  相似文献   

8.
The bisdithiazolyl radical 1a is dimorphic, existing in two distinct molecular and crystal modifications. The α-phase crystallizes in the tetragonal space group P4?2(1)m and consists of π-stacked radicals, tightly clustered about 4? points and running parallel to c. The β-phase belongs to the monoclinic space group P2(1)/c and, at ambient temperature and pressure, is composed of π-stacked dimers in which the radicals are linked laterally by hypervalent four-center six-electron S···S-S···S σ-bonds. Variable-temperature magnetic susceptibility χ measurements confirm that α-1a behaves as a Curie-Weiss paramagnet; the low-temperature variations in χ can be modeled in terms of a 1D Heisenberg chain of weakly coupled AFM S = (1)/(2) centers. The dimeric phase β-1a is essentially diamagnetic up to 380 K. Above this temperature there is a sharp hysteretic (T↑= 380 K, T↓ = 375 K) increase in χ and χT. Powder X-ray diffraction analysis of β-1a at 393 K has established that the phase transition corresponds to a dimer-to-radical conversion in which the hypervalent S···S-S···S σ-bond is cleaved. Variable-temperature and -pressure conductivity measurements indicate that α-1a behaves as a Mott insulator, but the ambient-temperature conductivity σ(RT) increases from near 10(-7) S cm(-1) at 0.5 GPa to near 10(-4) S cm(-1) at 5 GPa. The value of σ(RT) for β-1a (near 10(-4) S cm(-1) at 0.5 GPa) initially decreases with pressure as the phase change takes place, but beyond 1.5 GPa this trend reverses, and σ(RT) increases in a manner which parallels the behavior of α-1a. These changes in conductivity of β-1a are interpreted in terms of a pressure-induced dimer-to-radical phase change. High-pressure, ambient-temperature powder diffraction analysis of β-1a confirms such a transition between 0.65 and 0.98 GPa and establishes that the structural change involves rupture of the dimer in a manner akin to that observed at high temperature and ambient pressure. The response of the S···S-S···S σ-bond in β-1a to heat and pressure is compared to that of related dimers possessing S···Se-Se···S σ-bonds.  相似文献   

9.
Under ambient condition PdSe2 has the PdS2-type structure. The crystal structure of PdSe2 under pressure (up to 30 GPa) was investigated at room temperature by X-ray diffraction in an energy-dispersive configuration using a diamond anvil cell with a mixture of water/ethanol/methanol as a pressure transmitting medium. A reversible structural transition from the PdS2-type to the pyrite-type structure occurs around 10 GPa, and the applied pressure reduces the spacing between adjacent 2/proportional to [PdSe2] layers of the PdS2-type structure to form the three-dimensional lattice of the pyrite-type structure. First principles and extended Hückel electronic band structure calculations were carried out to confirm the observed pressure-induced structural changes. We also examined why the isoelectronic analogues NiSe2 and PtSe2 adopt structures different from the PdS2-type structure on the basis of qualitative electronic structure considerations.  相似文献   

10.
Room-temperature precipitation from aqueous solutions yields the hitherto unknown metastable stoichiometric iron selenide (ms-FeSe) with tetragonal anti-PbO type structure. Samples with improved crystallinity are obtained by diffusion-controlled precipitation or hydrothermal recrystallization. The relations of ms-FeSe to superconducting β-FeSe(1-x) and other neighbor phases of the iron-selenium system are established by high-temperature X-ray diffraction, DSC/TG/MS (differential scanning calorimetry/thermogravimetry/mass spectroscopy), (57)Fe M?ssbauer spectroscopy, magnetization measurements, and transmission electron microscopy. Above 300 °C, ms-FeSe decomposes irreversibly to β-FeSe(1-x) and Fe(7)Se(8). The structural parameters of ms-FeSe (P4/nmm, a = 377.90(1) pm, c = 551.11(3) pm, Z = 2), obtained by Rietveld refinement, differ significantly from literature data for β-FeSe(1-x). The M?ssbauer spectrum rules out interstitial iron atoms or additional phases. Magnetization data suggest canted antiferromagnetism below T(N) = 50 K. Stoichiometric non-superconducting ms-FeSe can be regarded as the true "parent" compound for the "11" iron-chalcogenide superconductors and may serve as starting point for new chemical modifications.  相似文献   

11.
Variable temperature X-ray and neutron powder diffraction techniques have been used to identify structural phase transitions in Cu-rich A(3)A'BO(6) phases. A transition from monoclinic to rhombohedral symmetry was observed by X-ray diffraction between 700 and 500 K in Sr(3)Cu(1-x)M(x)IrO(6) (M = Ni, Zn; 0 < or = x < or = 0.5). The temperature of the phase change decreased in a linear manner with Cu-content and was essentially independent of the nature of M. Ca(3.1)Cu(0.9)MnO(6) was shown to pass from a rhombohedral phase to a triclinic phase on cooling below 290 K; the structure of the triclinic phase was refined against neutron diffraction data collected at 2 K. Ca(3.1)Cu(0.9)RuO(6) undergoes a transition between a disordered rhombohedral phase and an ordered monoclinic phase when cooled below 623 K. Neutron diffraction has been used to determine the structure as a function of temperature in the range 523 < or =T/K < or = 723 and hence to determine an order parameter for the low temperature phase; the second-order transition is shown to be incomplete 100 K below the critical temperature.  相似文献   

12.
The effect of pressure on the dinuclear spin crossover material [{Fe(bpp)(NCS)(2)}(2)(4,4'-bipy)]·2MeOH (where bpp = 2,6-bis(pyrazol-3-yl)pyridine and 4,4'-bipy = 4,4'-bipyridine, 1) has been investigated with single crystal X-ray diffraction and Raman spectroscopy using diamond anvil cell techniques. The very gradual pressure-induced spin crossover occurs between 7 and 25 kbar, and shows no evidence of crystallographic phase transitions. The pressure-induced spin transition leads to a complete LS state which is not thermally accessible. This structural evolution under pressure is in stark contrast to the previously reported thermal spin crossover behaviour, in which a symmetry-breaking, purely structural phase transition results in only partial conversion to the low spin state. This observation is attributed to the symmetry-breaking phase transition becoming unfavourable under pressure.  相似文献   

13.
In this work, high pressure was used as a tool to induce structural transition and prepare metastable polymorphs of ternary sulfides. Structural transformations under high pressure of compounds belonging to the Ba(2)Co(1-x)Zn(x)S(3) (0 ≤ x ≤ 1.0) series were studied using X-ray diffraction and electron microscopy. All members of the Ba(2)Co(1-x)Zn(x)S(3) series show the Ba(2)CoS(3)-type one-dimensional structure, but, after heating under pressure, the Ba(2)CoS(3) compound (x = 0) separates into BaS and the two-dimensional BaCoS(2-δ) (δ ≈ 0), while Ba(2)Co(1-x)Zn(x)S(3) compounds with x ≥ 0.25 maintain their one-dimensional features but rearrange into polymorphs showing the Ba(2)MnS(3)-type structure. All structural transformations can be linked to shortening in interchain metal-metal distances caused by the high pressure, and the role of the zinc in preventing loss of one-dimensionality is discussed.  相似文献   

14.
Barium titanate nanowires synthesized with a surfactant-free hydrothermal method have been characterized by various techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), synchrotron X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The TEM and SEM analyses show the uniform cylindrical nanowires. The Rietveld refinement with synchrotron X-ray powder diffraction showed that the lattice parameters of cubic and tetragonal phases were a (= b = c) = 4.0134 A and a (= b) = 3.9998 A, c = 4.0303 A, respectively. The final weighted R-factor, R(wp), was 6.75% and the goodness of fit indicator was 1.30. The mass fraction of tetragonal and cubic phases based on the refined scale factor for the two phases were 98.4% and 1.6%, respectively, which clearly show the nanowires are tetragonal. The XPS analysis has shown that as-obtained BaTiO3 nanowires were phase pure. The Raman spectra confirm the tetragonal phase of the BaTiO3 nanowires. The dielectric constant measurement shows the shift in the transition temperature (Tc = 105 degrees C) compared to the bulk transition temperature (Tc = 132 degrees C). The dielectric constant at Tc was 174 measured at 1 kHz frequency.  相似文献   

15.
The high-pressure structure and dynamics of PbZr0.40Ti0.60O3 were investigated by means of neutron diffraction, X-ray diffraction, and resonance Raman spectroscopy. The complex (P4mm, Cm, Cc, F1, F1) phase transition sequence is characterized by these techniques. On the basis of the results of structure refinements, the high-pressure behavior of the spontaneous polarization, the (Zr,Ti)O6 rotation angles, and the polarization rotation angle are obtained. Moreover, resonance Raman spectra combined with previous Raman data in the literature provide evidence that the pressure-induced transition to the monoclinic Cm space group and the above transition sequence terminating in a paraelectric state are general features of Pb(Zr(1-x)Ti(x))O3 (0.48 < or = x < or = 1).  相似文献   

16.
We have performed high-pressure synchrotron X-ray diffraction experiments on nanoparticles of pure tin dioxide (particle size ∼30 nm) and 10 mol % Fe-doped tin dioxide (particle size ∼18 nm). The structural behavior of undoped tin dioxide nanoparticles has been studied up to 32 GPa, while the Fe-doped tin dioxide nanoparticles have been studied only up to 19 GPa. We have found that both samples present at ∼13 GPa a second-order structural phase transition from the ambient pressure tetragonal rutile-type structure (P42/mnm) to an orthorhombic CaCl2-type structure (space group Pnnm). No phase coexistence was observed for this transition. Additionally, pure SnO2 presents a phase transition to a cubic structure at ∼24 GPa. The evolution of the lattice parameters with pressure and the room-temperature equations of state are reported for the different phases. The reported results suggest that the partial substitution of Sn by Fe induces an enhancement of the bulk modulus of SnO2. Results are compared with previous studies on bulk and nanocrystalline SnO2. The effects of pressure on Sn-O bonds are also analyzed.  相似文献   

17.
We have investigated pressure-induced structural transitions in NaBH4 through density-functional theory calculations combined with X-ray and neutron diffraction experiments. Our calculations confirm that the cubic phase is stable up to 5.4 GPa and an orthorhombic phase occurs above 8.9 GPa, as observed in X-ray diffraction experiments. Both the calculations and X-ray diffraction measurements identify an intermediate tetragonal phase that appears between 6 and 8 GPa; that is, between the cubic and orthorhombic phases. This result is also confirmed by high-pressure neutron diffraction experiments performed on NaBD4. Our calculations and X-ray diffraction measurements show that the space group of the orthorhombic phase above 8.9 GPa is Pnma and the orthorhombic phase remains stable up to 30 GPa. The calculated equations of state are in excellent agreement with experiments.  相似文献   

18.
We have studied the high-pressure structural behavior of zinc ferrite (ZnFe2O4) nanoparticles by powder X-ray diffraction measurements up to 47 GPa. We found that the cubic spinel structure of ZnFe2O4 remains up to 33 GPa and a phase transition is induced beyond this pressure. The high-pressure phase is indexed to an orthorhombic CaMn2O4-type structure. Upon decompression the low- and high-pressure phases coexist. The compressibility of both structures was also investigated. We have observed that the lattice parameters of the high-pressure phase behave anisotropically upon compression. Further, we predict possible phase transition around 55 GPa. For comparison, we also studied the compression behavior of magnetite (Fe3O4) nanoparticles by X-ray diffraction up to 23 GPa. Spinel-type ZnFe2O4 and Fe3O4 nanoparticles have a bulk modulus of 172 (20) GPa and 152 (9) GPa, respectively. This indicates that in both cases the nanoparticles do not undergo a Hall-Petch strengthening.  相似文献   

19.
Wang H  Wang F  Jones K  Miller GJ 《Inorganic chemistry》2011,50(24):12714-12723
A crystallographic study and theoretical analysis of the structural and La/Y site preferences in the La(5-x)Y(x)Si(4) (0 ≤ x ≤ 5) series prepared by high-temperature methods is presented. At room temperature, La-rich La(5-x)Y(x)Si(4) phases with x ≤ 3.0 exhibit the tetragonal Zr(5)Si(4)-type structure (space group P4(1)2(1)2, Z = 4, Pearson symbol tP36), which contains only Si-Si dimers. On the other hand, Y-rich phases with x = 4.0 and 4.5 adopt the orthorhombic Gd(5)Si(4)-type structure (space group Pnma, Z = 4, Pearson symbol oP36), also with Si-Si dimers, whereas Y(5)Si(4) forms the monoclinic Gd(5)Si(2)Ge(2) structure (space group P2(1)/c, Z = 4, Pearson symbol mP36), which exhibits 50% "broken" Si-Si dimers. Local and long-range structural relationships among the tetragonal, orthorhombic, and monoclinic structures are discussed. Refinements from single crystal X-ray diffraction studies of the three independent sites for La or Y atoms in the asymmetric unit reveal partial mixing of these elements, with clearly different preferences for these two elements. First-principles electronic structure calculations, used to investigate the La/Y site preferences and structural trends in the La(5-x)Y(x)Si(4) series, indicate that long- and short-range structural features are controlled largely by atomic sizes. La 5d and Y 4d orbitals, however, generate distinct, yet subtle effects on the electronic density of states curves, and influence characteristics of Si-Si bonding in these phases.  相似文献   

20.
We have investigated the paraelectric-to-ferroelectric phase transition of various sizes of nanocrystalline barium titanate (BaTiO3) by using temperature-dependent Raman spectroscopy and powder X-ray diffraction (XRD). Synchrotron X-ray scattering has been used to elucidate the room temperature structures of particles of different sizes by using both Rietveld refinement and pair distribution function (PDF) analysis. We observe the ferroelectric tetragonal phase even for the smallest particles at 26 nm. By using temperature-dependent Raman spectroscopy and XRD, we find that the phase transition is diffuse in temperature for the smaller particles, in contrast to the sharp transition that is found for the bulk sample. However, the actual transition temperature is almost unchanged. Rietveld and PDF analyses suggest increased distortions with decreasing particle size, albeit in conjunction with a tendency to a cubic average structure. These results suggest that although structural distortions are robust to changes in particle size, what is affected is the coherency of the distortions, which is decreased in the smaller particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号