首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The salts K[AuCl(2)(CN)(2)]·H(2)O (1), K[AuBr(2)(CN)(2)]·2H(2)O (2) and K[AuI(2)(CN)(2)]·?H(2)O (3) were synthesized and structurally characterized. Compound 1 crystallizes as a network of square planar [AuCl(2)(CN)(2)](-) anions separated by K(+) cations. However, 2 and 3 feature 2-D sheets built by the aggregation of [AuX(2)(CN)(2)](-) anions via weak, intermolecular X···X interactions. The mixed anion double salts K(3)[Au(CN)(2)](2)[AuBr(2)(CN)(2)]·H(2)O (4) and K(5)[Au(CN)(2)](4)[AuI(2)(CN)(2)]·2H(2)O (5) were also synthesized by cocrystallization of K[Au(CN)(2)] and the respective K[AuX(2)(CN)(2)] salts. Similarly to 2 and 3, the [Au(CN)(2)](-) and [AuX(2)(CN)(2)](-) anions form 2-D sheets via weak, intermolecular Au(I)···X and Au(I)···Au(I) interactions. In the case of 5, a rare unsupported Au(I)···Au(III) interaction of 3.5796(5) ? is also seen between the two anionic units. Despite the presence of Au(I) aurophilic interactions of 3.24-3.45 ?, neither 4 nor 5 exhibit any detectable emission at room temperature, suggesting that the presence of Au(I)···X or Au(I)···Au(III) interactions may affect the emissive properties.  相似文献   

2.
In this article, hydrogen bonding interaction between p-cresol (p-CR) and cyclic ether, tetrahydrofuran (THF) and thioether, tetrahydrothiophene (THT) has been investigated. Two-color resonantly enhanced two-photon ionization in conjunction with the fluorescence detected IR (FDIR) spectroscopy was used to record the changes in the OH stretching frequency in these complexes. The FDIR spectra showed existence of a single conformer of the p-CR·THF and two conformers of the p-CR·THT complex. With the help of computed IR spectra and atoms-in-molecules analysis, the two conformers of p-CR·THT were assigned as the complex of p-CR with THT (C(2))/THT (C(S)). The redshift of OH stretching frequency for the p-CR·THF complex was greater compared to those for the conformers of the p-CR·THT complex. The binding energies of the p-CR·THF and p-CR·THT complexes were computed to be 7.42 and 6.15 kcal/mole. These were of the same order as those for the acyclic analogs, diethylether (DEE), and diethylsulfide (DES), of the solvent molecules under investigation. Although the DEE and THF consist of same number of carbon atoms, the dispersion energy contribution was much higher (43%) for DEE than that for THF (30%). In the case of sulfur analogs, however, it was similar (~50%) in the case of both DES well as THT complexes. All the computed H-bond indicators for these two complexes nicely correlate with the observed redshift of the O-H stretch.  相似文献   

3.
Using ab initio calculations, we have studied the structures, properties, and nature of halogen bonds in H(2)CS-XY (XY = FF, ClF, ClCl, BrF, BrCl, and BrBr) complexes. The results show that the ring-shaped complexes are formed by a halogen bond (S···X) and a secondary hydrogen bond (H···X). We also analyzed the H(2)CS-ClF-ClF and FCl-H(2)CS-ClF complexes to investigate the cooperative and diminutive halogen bonding. The cooperative effect of halogen bonding is found in the former, while the diminutive effect is present in the latter. We finally considered the solvent effect on the halogen bond in H(2)CS-BrCl complex and found that the solvent has a prominent enhancing effect on it. The complexes have also been analyzed with natural bond orbital, atoms in molecules, and symmetry adapted perturbation theory method.  相似文献   

4.
Using FTIR and Raman spectroscopy, the formation of halogen bonded complexes of the trifluorohalomethanes CF(3)Cl, CF(3)Br and CF(3)I with ethene and propene dissolved in liquid argon has been investigated. For CF(3)Br and CF(3)I, evidence was found for the formation of C-X···π halogen bonded 1:1 complexes. At a higher ratio of CF(3)I/propene, weak absorptions due to a 2:1 complex were also observed. Using spectra recorded at different temperatures, the complexation enthalpies for the complexes were determined to be -5.3(2) kJ mol(-1) for CF(3)Br·ethene, -7.5(2) kJ mol(-1) for CF(3)I·ethene, -5.6(1) kJ mol(-1) for CF(3)Br·propene, -8.8(1) kJ mol(-1) for CF(3)I·propene and -16.5(6) kJ mol(-1) for (CF(3)I·)(2)propene. The complexation enthalpies of the hydrogen bonded counterparts, with CF(3)H as the Lewis acid, were determined to be -4.6(4) kJ mol(-1) for CF(3)H·ethene and -5.1(2) kJ mol(-1) for CF(3)H·propene. For both hydrogen bonded complexes, a blue shift, by +4.8 and +4.0 cm(-1), respectively, was observed for the C-H stretching mode. The results from the cryospectroscopic study are compared with ab initio calculations at the MP2/aug-cc-pVDZ(-PP) level.  相似文献   

5.
The analogy of chloride–chloride contacts in compounds containing Fe–Cl1···Cl2–Fe synthons with well-studied organic C–Cl1···Cl2–C interactions has been investigated. The crystal structures of the two tetrahaloferrate(III) salts, [(2-iodopyridinium)2FeX4]X (X = Cl, Br) have been determined. Analysis of these two isomorphous structures and related published structures shows that the arrangement of Fe–Cl1···Cl2–Fe synthons is similar to that of C–Cl1···Cl2–C with the Fe–Cl1···Cl2 and Cl1···Cl2–Fe angles being ~150°. While inter-chlorine distances are less than the sum of van der Waals radii in C–Cl1···Cl2–C units, they are equal to, or longer, than the sum of van der Waals radii in the corresponding Fe–Cl1···Cl2–Fe contacts. This might indicate that the arrangement of Fe–Cl1···Cl2–Fe synthons occurs predominately to reduce repulsive forces rather than as a result of attractive forces. However, it is observed that the halide–halide distance in [(2-iodopyridinium)2FeBr4]Br is shorter than in the isostructural chloride species, which can be explained by the fact that bromine is softer than chlorine. Several intermolecular forces unite the cations and anions within the crystalline lattice of [(2-iodopyridinium)2FeX4]X including N–H···X?, C–I···X–Fe, N(π)···X–Fe, N(π)···I–C, and Fe–X1···X2–Fe contacts. The calculated electron density and electrostatic potential of the [FeX4]? anions and the organic iodopyridinium cations was used to describe the arrangement of these synthons and the hierarchy of the strengths of the respective contacts.  相似文献   

6.
In this article, we performed quantum chemical calculations to study the π Au-bond in the HCCH···AuX (X = OH, F, Cl, Br, CH(3), CCH, CN, and NC) system. For comparison, we also investigated the HCCH···Au(+) and H(2)CCH(2)···AuF complexes. The equilibrium geometries and infrared spectra at the MP2 level were reported. The interaction energies were calculated at the MP2 and coupled-cluster single double triple levels. The natural bond orbital results support the Dewar-Chatt-Duncanson model. Moreover, we focused on the influence of X atom on the geometries, interaction energies, and orbital interactions as well as the comparison between HCCH···AuF and H(2)CCH(2)···AuF complexes. Although the π Au-bond in these complexes is electrostatic in nature, the weight of covalent nature is also important.  相似文献   

7.
Xie  Pengtao  Sun  Meiyan  Li  Xiaoyan  Zeng  Yanli  Zhang  Xueying 《Structural chemistry》2020,31(3):937-946

In this work, we conducted ab initio calculations to evaluate the properties of M-H···π interactions between the metal hydrides MH (M?=?Li, Na, MgH, CaH, NiH, CuH, ZnH) and inorganic benzenes B3X3H3 (X?=?O, S, Se). Unlike benzene, inorganic benzene B3X3H3 (X?=?O, S, Se) supports a large area of positive molecular electrostatic potential above and below the molecule, which acts as a Lewis acid and interacts with the H atom of metal hydride. MP2/6–311++G(d, p) results show that these intermolecular interactions exhibit the characteristics of close shell noncovalent interactions. The electrostatic interaction significantly contributes to stabilizing the complexes. The M-H···π interaction’s strength is associated with the property of group VI atom and metal hydride. X’s atomic number decreasing and the H of MH becoming more negative facilitate stronger interaction. Furthermore, the addition of substituent on the B3O3Y3 (Y?=?F, Cl, CN, OH, and CH3) significantly impacts the π-hole of inorganic benzene and thus modulates these M-H···π interactions. More elongation and blueshift of the MH bonds upon complexation were found for electron-withdrawing substituents. Analysis of σ and π orbital separation indicates that the π-attractor’s position relative to the B atom in the inorganic benzene changes with different substituents. The M-H···π interaction’s strength is primarily dependent on the π-electron density, not σ-electron density.

  相似文献   

8.
MP2 calculations with cc-pVTZ basis set were used to analyze intermolecular interactions in F(3)CX···HMgH···Y and F(3)CX···Y···HMgH triads (X = Cl, Br; Y = HCN, and HNC) which are connecting with three kinds of unusual weak interactions, namely halogen-hydride, dihydrogen, and σ-hole. To understand the properties of the systems better, the corresponding dyads are also studied. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads were investigated at the MP2/cc-pVTZ computational level. Particular attention is given to parameters such as cooperative energies, cooperative dipole moments, and many-body interaction energies. Those complexes with simultaneous presence of a σ-hole bond and a dihydrogen bond show cooperativity energy ranging between -1.02 and -2.31 kJ mol(-1), whereas those with a halogen-hydride bond and a dihydrogen bond are diminutive, with this energetic effect between 0.1 and 0.63 kJ mol(-1). The electronic properties of the complexes have been analyzed using the molecular electrostatic potential (MEP), the electron density shift maps, and the parameters derived from the atoms in molecules (AIM) methodology.  相似文献   

9.
A comparison of the performance of various density functional methods including long‐range corrected and dispersion corrected methods [MPW1PW91, B3LYP, B3PW91, B97‐D, B1B95, MPWB1K, M06‐2X, SVWN5, ωB97XD, long‐range correction (LC)‐ωPBE, and CAM‐B3LYP using 6‐31+G(d,p) basis set] in the study of CH···π, OH···π, and NH···π interactions were done using weak complexes of neutral (A) and cationic (A+) forms of alanine with benzene by taking the Møller–Plesset (MP2)/6‐31+G(d,p) results as the reference. Further, the binding energies of the neutral alanine–benzene complexes were assessed at coupled cluster (CCSD)/6‐31G(d,p) method. Analysis of the molecular geometries and interaction energies at density functional theory (DFT), MP2, CCSD methods and CCSD(T) single point level reveal that MP2 is the best overall performer for noncovalent interactions giving accuracy close to CCSD method. MPWB1K fared better in interaction energy calculations than other DFT methods. In the case of M06‐2X, SVWN5, and the dispersion corrected B97‐D, the interaction energies are significantly overrated for neutral systems compared to other methods. However, for cationic systems, B97‐D yields structures and interaction energies similar to MP2 and MPWB1K methods. Among the long‐range corrected methods, LC‐ωPBE and CAM‐B3LYP methods show close agreement with MP2 values while ωB97XD energies are notably higher than MP2 values. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

10.
Cl, S, and P atoms have previously been shown as capable of engaging in a noncovalent bond with the N atom on another molecule. The effects of substituents B on the former atoms on the strength of this bond are examined, and it is found that the binding energy climbs in the order B = CH(3) < NH(2) < CF(3) < OH < Cl < NO(2) < F. However, there is some variability in this pattern, particularly for the NO(2) group. The A···N bonds (A = Cl, S, P) can be quite strong, amounting to as much as 10 kcal/mol. The binding energy arises from approximately equal contributions from its induction and electrostatic components, although the former becomes more dominant for the stronger bonds. The induction energy is due in large measure to the transfer of charge from the N lone pair to a B-A σ* antibonding orbital of the electron-acceptor molecule containing Cl, S, or P. These A···N bonds typically represent the lowest-energy structure on each potential energy surface, stronger than H-bonds such as NH···F, CH···N, or SH···N.  相似文献   

11.
《Solid State Sciences》2004,6(6):509-517
The title compounds were synthesized from MoCl2 and the appropriate commercial chlorides and their structures were solved by a combination of single crystal X-ray diffraction analysis and theoretical methods. The NH4, K and Rb compounds are essentially isostructural, and crystallize in space group Ia (No. 9) with the cell parameters (in Å) a=9.173(1), b=14.986(2), c=17.505(3), β=92.94(2)° (NH4); a=9.140(4), b=14.852(5), c=17.445(11), β=93.48(6)° (K); a=9.215(1), b=14.941(3), c=17.532(2), β=92.70(1)° (Rb); while the Cs compound crystallizes in space group P21/n (No. 14) with the cell dimensions a=9.771(3), b=12.984(4), c=21.535(4), β=90.81(3)°.  相似文献   

12.
Regioselectivity for the 5,8,15,18-substituted isomer over the 5,8,14,17-isomer was observed in a series of mercaptan–bromide coupling reactions leading to the formation of 2,11-dithia[3.3]paracyclophanes. Their molecular assembly was established by X-ray crystallographic studies. In the crystal packing of these paracyclophanes, several types of non-covalent interactions including halogen–halogen interaction, halogen-bonding interaction, weak hydrogen-bonding interaction, etc. are observed in crystals 3a, 3b and 3c. There is evidence to indicate that weak non-covalent Br…Br, Br…S, Br…N, C–H…S, S…S and C–H…N interactions play an important role in governing their molecular assembly assumed in the solid state. The attractive interactions of Br…Br, Br…S and Br…N are also rationalised and supported in terms of the density functional theory calculations.

  相似文献   

13.
14.
A series of ring-shaped molecular complexes formed by H(3)N, HF and XY (X = Cl, Br and Y = F, Cl, Br) have been investigated at the MP2/aug-cc-pVTZ level of theory. Their optimized geometry, stretching mode, and interaction energy have been obtained. We found that each complex possesses two red-shifted hydrogen bonds and one red-shifted halogen bond, and the two hydrogen bonds exhibit strong cooperative effects on the halogen bond. The cooperativity among the NH(3)···FH, FH···XY and H(3)N···XY interactions leads to the formations of these complexes. The AIM analysis has been performed at the CCSD(T)/aug-cc-pVQZ level of theory to examine the topological characteristics at the bond critical point and at the ring critical point, confirming the coexistence of the two hydrogen bonds and one halogen bond for each complex. The NBO analysis carried out at the B3LYP/aug-cc-pVTZ level of theory demonstrates the effects of hyperconjugation, hybridization, and polarization coming into play during the hydrogen and halogen bonding formations processes, based on which a clockwise loop of charge transfer was discovered. The molecular electrostatic potential has been employed to explore the formation mechanisms of these molecular complexes.  相似文献   

15.
1,2,3-三氮唑芳香寡聚体可以通过分子内三中心C—H···O氢键诱导形成折叠或螺旋二级结构.通过~1H NMR实验研究这类人工二级结构在氯仿和二氯甲烷中进一步形成分子间C—H···Cl~-和C—H···N氢键的倾向性,发现分子内的两类C—H···O氢键可以通过进一步形成C—H···Cl~-氢键而被弱化.在过量Cl~-存在时,三氮唑N-1侧的六元环C—H···O氢键被显著破坏,由此形成分子间C—H···Cl~-氢键,从而诱导骨架形成另一类更加扩展的折叠构象.过量的Br~-和I~-也可以形成类似的分子间氢键.对其中一个八聚体研究揭示,1,2,3-三氮唑螺旋体的内侧2,3-位N原子还可以与三炔和二炔衍生物的炔基C—H形成分子间弱的C—H···N氢键,三氮唑折叠结构通过诱导N原子形成环形定位促进这一分子间弱氢键产生协同效应.  相似文献   

16.
17.
Halogen atoms are important reactive radicals in the atmosphere. In this work, pulsed jet discharge matrix isolation spectroscopy and computational methods were used to characterize prereactive complexes of halogen atoms with simple halons. Our experiments combined matrix isolation techniques with a pulsed DC discharge nozzle, where a dilute CH(2)XBr (X = H, Cl, Br)/rare gas sample was gently discharged and the products were deposited onto a cold KBr window. The Br···BrCH(2)X (X = H, Cl, Br) complexes were characterized by infrared and electronic spectroscopy, supported by ab initio and density functional theory (DFT) calculations, which shed light on the structure of, bonding in, and binding energy of the complexes. The correlation of charge-transfer energy with donor ionization potential (Mulliken correlation) was examined, and the charge-transfer photochemistry of the complexes was explored.  相似文献   

18.
The complexes OCS···C(6)H(6), C(6)H(6)···Rg, and OCS···C(6)H(6)···Rg (Rg = He, Ne, Ar, and Kr) have been studied by means of MP2 calculations and QTAIM analyses. The optimized geometries of the title complexes have C(6v) symmetry. The intermolecular interactions in the OCS···C(6)H(6)···Rg complexes are comparatively stronger than that in the OCS···C(6)H(6) complex, which prove that the He, Ne, Ar, and Kr atoms have the ability to form weak bonds with the benzene molecule. In QTAIM studies, the π-electron density of benzene was separated from the total electron density. The molecular graphs and topological parameters of the OCS···πC(6)H(6), πC(6)H(6)···Rg, and OCS···πC(6)H(6)···Rg complexes indicate that the interactions are mainly attributed to the electron density provided by the π-bonding electrons of benzene and the top regions of the S and Rg atoms. Charge transfer is observed from the benzene molecule to SCO/Rg in the formation of the OCS···C(6)H(6), C(6)H(6)···Rg, and OCS···C(6)H(6)···Rg complexes. Molecular electrostatic potential (MEP) analyses suggest that the electrostatic energy plays a pivotal role in these intermolecular interactions.  相似文献   

19.
The binding energies of thirty-six hydrogen-bonded peptide-base complexes, including the peptide backbone-ase complexes and amino acid side chain-base complexes, are evaluated using the analytic potential energy function established in our lab recently and compared with those obtained from MP2, AMBER99, OPLSAA/L, and CHARMM27 calculations. The comparison indicates that the analytic potential energy function yields the binding energies for these complexes as reasonable as MP2 does, much better than the force fields do. The individual N H…O=C, N H…N, C H…O=C, and C H…N attractive interaction energies and C=O…O=C, N H…H N, C H…H N, and C H…H C repulsive interaction energies, which cannot be easily obtained from ab initio calculations, are calculated using the dipole-dipole interaction term of the analytic potential energy function. The individual N H…O=C, C H…O=C, C H…N attractive interactions are about 5.3±1.8, 1.2±0.4, and 0.8 kcal/mol, respectively, the individual N H … N could be as strong as about 8.1 kcal/mol or as weak as 1.0 kcal/mol, while the individual C=O…O=C, N H…H N, C H…H N, and C H…H C repulsive interactions are about 1.8±1.1, 1.7±0.6, 0.6±0.3, and 0.35±0.15 kcal/mol. These data are helpful for the rational design of new strategies for molecular recognition or supramolecular assemblies.  相似文献   

20.
The electronic and molecular structures of mono- and dihalocarbene anions constructed by model CX1X2?? (X1, X2 = H, F, Cl, Br, I), as well as the corresponding carbenes CX1X2 and analogous silicon-anions SiX1X2??, have been studied in detail using the B3LYP, MP2, and QCISD(T) levels of theory. Our calculated findings suggest that stabilization of the compounds is associated with the size of the halogen substituent X, which is further confirmed by ionization energies, the spin density (S d), and the second-order perturbative energies (E(2)). Besides, we have also explored the source of the anions’ proton affinity difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号