首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intramolecular ligand hydroxylation was observed during the reactions of dioxygen with the dicopper(I) complexes of the ligands L(1)(L(1)=alpha,alpha'-bis[(2-pyridylethyl)amino]-m-xylene) and L(3)(L(3)=alpha, alpha'-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-m-xylene). The dinuclear copper(I) complex [Cu(2)L(3)](ClO(4))(2) and the dicopper(II) complex [Cu(2)(L(1)-O)(OH)(ClO(4))]ClO(4) were characterized by single-crystal X-ray structure analysis. Furthermore, phenolate-bridged complexes were synthesized with the ligand L(2)-OH (structurally characterized [Cu(2)(L(2)-O)Cl(3)] with L(2)=alpha, alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; synthesized from the reaction between [Cu(2)(L(2)-O)(OH)](ClO(4))(2) and Cl(-)) and Me-L(3)-OH: [Cu(2)(Me-L(3)-O)(mu-X)](ClO(4))(2)xnH(2)O (Me-L(3)-OH = 2,6-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-4-methylphenol and X = C(3)H(3)N(2)(-)(prz), MeCO(2)(-) and N(3)(-)). The magnetochemical characteristics of compounds were determined by temperature-dependent magnetic studies, revealing their antiferromagnetic behaviour [-2J(in cm(-1)) values: -92, -86 and -88; -374].  相似文献   

2.
A new family of copper(I) complexes with "glycoligands" containing a central saccharide scaffold, with 2-picolyl ether groups or 2-picolylamine or N-imidazolylamine groups, has been prepared and characterized. For this purpose, the following tetradentate ligands have been synthesized: methyl 2,3-di-O-(2-picolyl)-alpha-D-lyxofuranoside (L1), 1,5-anhydro-2-deoxy-3,4-di-O-(2-picolyl)-d-galactitol (L2), 5-(amino-N-(2-salicyl))-5-deoxy-1,2-O-isopropylidene-3-O-(2-picolyl)-alpha-D-xylofuranose (L3), and 5-(amino-N-(2-salicyl))-5-deoxy-1,2-O-isopropylidene-3-O-(methylimidazol-2-yl)-alpha-D-xylofuranose (L4). The ligands and the complexes were characterized by elemental analysis, IR, 1H and 13C NMR spectroscopies, ESI mass spectrometry, and cyclic voltammetry. Collaterally with the experimental work, HF-DFT(B3LYP/6-31G*) computations were performed to obtain additional structural information. The Cu(I) complexes are found to be pentacoordinated. The redox properties and the O2-reactivity of the Cu(I)Ln complexes have been studied. Reactions of Cu(I) complexes with dioxygen in ethanol yield stable Cu(II) complexes as confirmed by UV-visible spectrophotometry and EPR spectroscopy.  相似文献   

3.
Summary The reactions of 1,3-phenylenediacetatodicopper(I) pyridine, prepared from 1,3-phenylenediacetatocopper(II) by metallic copper, were studied. On oxygenation, a copper-dioxygen complex was formed, whereas carbon monoxide yielded an unstable carbonyl complex. The complexes were characterised by spectroscopic measurements.  相似文献   

4.
The reactivity of chlorohydrocarbons with different electron affinities (A e) and C-Cl bond dissociation energies (E C-Cl) in the oxidation of copper(I) chloride complexes was studied. The rate of oxidation depends only on Ae. Chain initiation, involving Cu(I), occurs by an electron-transfer mechanism.Translated from Kinetika i Kataliz, Vol. 46, No. 1, 2005, pp. 59–63.Original Russian Text Copyright © 2005 by Kharitonov, Golubeva.  相似文献   

5.
6.
Summary The composition and stability of copper(I) complexes with thioacetamide (TAA) have been evaluated with the help of square-wave voltammetry using the fast pulse technique. Two species, namely Cu(I) (TAA) and Cu(I) (TAA)2, have been identified having the formation constants log 1=16.85; log 2=18.03. The complex is stable in highly acidic medium (pH1). The application for the determination of copper is pointed out.  相似文献   

7.
Catalytic reduction of O2 to H2O, and coupling to membrane proton translocation, occurs at the heterobinuclear heme a3-CuB active site of cytochrome c oxidase. One of the CuB ligated histidines is cross-linked to a neighboring tyrosine (C-N bond; tyrosine C6 and histidine epsilon-nitrogen), and the protic residue of this cross-linked His-Tyr moiety is proposed to participate as both an electron and a proton donor in the catalytic dioxygen reduction event. To provide insight into the chemistry of such a moiety, we have synthesized and characterized tetra- and tridentate pyridylalkylamine chelate ligands {LN4OR and LN3OR (R = H or Me)}, which include an imidazole-phenol (or anisole) cross-link and their copper(I/II) complexes. [CuI(LN4OH)]B(C6F5)4 (1) reacts with dioxygen at -80 degrees C in THF, forming an unstable trans-mu-1,2-peroxodicopper(II)complex, which subsequently converts to a dimeric copper(II)-phenolate complex [{Cu(LN4O-)}2](B(C6F5)4)2 (5a). The close analogue [CuI(LN4OMe)]B(C6F5)4 (3) binds dioxygen reversibly at -80 degrees C in tetrahydrofuran. Stopped-flow kinetics of the reaction [CuI(LN3OH)]ClO4 (2) with O2 in CH2Cl2 indicate a steady formation of the purple dimeric product [{Cu(LN3O-)}2](ClO4)2 (5b), which has been analyzed in the temperature range from -40 to +20 degrees C, DeltaH = -9.6 (6) kJ mol-1, DeltaS = -168 (2) J mol-1 K-1 (k(-40 degrees C) = 1.05(4) x 106 and k(+20 degrees C) = 4.6(2) x 105 M-2 s-1). The X-ray crystal structures of 1, [CuII(LN3OH)(MeOH)(OClO3-)](ClO4) (4), 5a, and 5b are reported.  相似文献   

8.
Two novel, neutral, octanuclear copper(I) complexes displaying twisted-boat Cu(8) conformations and short Cu-Cu interactions have been synthesized from hydrothermal reactions; the complexes show unusual multiple band emissions.  相似文献   

9.
Stepwise formation of copper(ll) chloride complexes with diphosphine dioxides has been studied using paramagnetic resonance. It was found that in complexes with a copper:ligand composition of 11 substituents have little effect on parameters of the anisotropic EPR spectra. The spectra of complexes with a metal:ligand composition of 12 are considerably more sensitive to the introduction of substituents; this is explained by sterically dependent differences in the structure of the complexes. The possibility of trisligand complexes being formed is evidently largely determined by the size of the groups on the phosphorus atoms.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 362–368, February, 1991.  相似文献   

10.
The Cu(III) complex Pr 4N[Cu{S 2C=( t-Bu-fy)} 2] ( 1) ( t-Bu-fy = 2,7-di- tert-butylfluoren-9-ylidene) reacts with [Cu(PR 3) 4]ClO 4 in 1:1 molar ratio in MeCN to give the dinuclear complexes [Cu 2{[SC=( t-Bu-fy)] 2S}(PR 3) n ] [ n = 2, R = Ph ( 2a); n = 3, R = To ( 3b); To = p-tolyl]. The analogue of 2a with R = To ( 2b) can be obtained from the reaction of 3b with 1/8 equiv of S 8. Compound 2b establishes a thioketene-exchange equilibrium in solution leading to the formation of [Cu 4{S 2C=( t-Bu-fy)} 2(PTo 3) 4] ( 4b) and [Cu 2{[SC=( t-Bu-fy)] 3S}(PTo 3) 2] ( 5b). Solid mixtures of 4b and 5b in varying proportions can be obtained when the precipitation of 2b is attempted using MeCN. The reactions of 1 with AgClO 4 and PPh 3, PTo 3 or PCy 3 in 1:1:4 molar ratio in MeCN afford the heterodinuclear complexes [AgCu{[SC=( t-Bu-fy)] 2S}(PR 3) 3] [R = Ph ( 6a), To ( 6b), Cy ( 6c)]. Complex 6c dissociates PCy 3 in solution to give the bis(phosphine) derivative [AgCu{[SC=( t-Bu-fy)] 2S}(PCy 3) 2] ( 7c), which undergoes the exchange of [M(PCy 3)] (+) units in CD 2Cl 2 solution to give small amounts of [Cu 2{[SC=( t-Bu-fy)] 2S}(PCy 3) 2] ( 2c) and [Ag 2{[SC=( t-Bu-fy)] 2S}(PCy 3) 2] ( 8c). Complexes 6a and b participate in a series of successive equilibria in solution, involving the dissociation of phosphine ligands and the exchange of [M(PCy 3)] (+) units to give 2a or 3b and the corresponding disilver derivatives [Ag 2{[SC=( t-Bu-fy)] 2S}(PR 3) 2] [R = Ph ( 8a), To ( 8b)], followed by thioketene-exchange reactions to give [AgCu{[SC=( t-Bu-fy)] 3S}(PR 3) 2] [R = Ph ( 9a), To ( 9b)]. Complexes 9a and b can be directly prepared from the reactions of 1 with AgClO 4 and PPh 3 or PTo 3 in 1:1:3 molar ratio in THF. The crystal structures of 3b, 6b, 6c, 7c, and 9a have been solved by single-crystal X-ray diffraction studies and, in the cases of 7c and 9a, reveal the formation of short Ag...Cu metallophilic contacts of 2.8157(4) and 2.9606(6) A, respectively.  相似文献   

11.
The equilibrium reactions of the formation of solvates of CuCl2 with dimethyl sulfoxide, N,N-dimethylformamide, and triethyl phosphate have been studied on the basis of the kinetic results of the oxidation of N,N-dimethylaniline (DMA) with copper(II) chloride in mixed solvents. The solvates investigated do not take part in the reaction with DMA because of their greater stability as compared with the complex between copper(II) and DMA. The nature of the primary complex between the reactants is discussed.Translated from Teoreticheskaya i Éksperimental-naya Khimiya, Vol. 21, No. 5, pp. 608–611, September–October, 1985.  相似文献   

12.
A series of heteroleptic copper(I) complexes incorporating amido-triazole and diphosphine ligands, [Cu(I)(N-phenyl-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (1), [Cu(I)(N-(4-methylphenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (2), [Cu(I)(N-(4-methoxyphenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (3), [Cu(I)(N-(4-chlorophenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (4), [Cu(I)(2,6-dimethyl-N-[2-(1-phenyl-1H-1,2,3-triazol-4-yl)phenyl]aniline)(dppb)] (5), [Cu(I)(2,6-dimethyl-N-[2-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl]aniline)(dppb)] (6), (dppb = 1,2-bis(diphenylphosphino)benzene), have been prepared. The complexes adopt a distorted tetrahedral geometry in the solid state with the amido-triazole ligand forming a six-member ring with the Cu(I) ion. The complexes exhibit long-lived photoluminescence with colors ranging from yellow to red-orange in the solid state, in frozen glass at 77 K, and in fluid solution with modest quantum yields of up to 0.022. Electrochemically, complexes 1-4 show irreversible oxidation waves while 5 and 6 are characterized by quasi-reversible oxidations as determined by cyclic voltammetry. For 1-4, the emission energy and oxidation potential are found to vary linearly with the Hammett parameter σ(p) of the substituent in the para position of the amido ligand, while in 5 and 6, large differences in emission are observed because of the nature of N3 substitution in the triazole ring. Density functional theory calculations have been performed on the singlet ground states (S(o)) of all complexes at the BP86/6-31G(d) level to assist in assignment of the excited states. On the basis of both experimental and computational results, we have assigned the excited states as intraligand + metal-to-ligand charge transfer (3)(ILCT+MLCT) or ligand-to-ligand charge transfer mixed with MLCT (3)(MLCT +LLCT) in these complexes.  相似文献   

13.
New five- and six-coordinate complexes containing the [Mn(III)(Br4cat)2](-) core (Br4cat(2-) = tetrabromo-1,2-catecholate) have been prepared. Homoleptic [Mn(III)(Br4cat)3](3-) reacts rapidly with O2 to produce tetrabromo-1,2-benzoquinone (Br4bq). The [Mn(III)(Br4cat)2](-) fragment is a robust catalytic platform for the aerobic conversion of catechols to quinones. The oxidase activity apparently derives from the coupling of metal- and ligand-centered redox events.  相似文献   

14.
15.
Christy A  Nyhus A  Kvalheim OM  Hagen S  Schanche J 《Talanta》1999,48(5):359-1120
Porous poly(para-divinylbenzene) and poly(meta-divinylbenzene) particles were synthesised from para-divinylbenzene and meta-divinylbenzene monomers with toluene and 2-ethylhexanoic acid as porogens. The residual vinyl groups in the particles were thereafter reacted using aluminium chloride with dichlorobenzene as a catalyst. The conversion of vinyl groups was followed by analysing polymer particles taken from the reaction mixture at different time intervals. Infrared spectroscopy both in the mid and near infrared region was used as the analytical technique. The intensity changes in the overtone absorption at 1628 nm due to the vinyl bonds were used as the basis for the quantification of the vinyl group consumption. Infrared spectra of the particles in the mid IR were also measured to understand changes taking place in the polymer matrix during the reaction. The results indicated that residual vinyl groups in these polymer particles were consumed during the reaction with aluminium chloride. The reaction of aluminium chloride with the polymer matrix was explained by proposing mechanisms for the formation of different products during the reaction. The complex formed between aluminium chloride and the residual vinyl groups seemed to induce addition of HCl to the vinyl group or leads to crosslinking and/or cyclisation in the case poly(para-DVB) particles. The reaction of aluminium chloride with poly(meta-DVB) takes place to a lesser extent.  相似文献   

16.
A series of multinuclear Copper(I) guanidinate complexes have been synthesized in a succession of reactions between CuCl and the lithium guanidinate systems Li{L} (L = Me(2)NC((i)PrN)(2) (1a), Me(2)NC(CyN)(2) (1b), Me(2)NC((t)BuN)(2)(1c), and Me(2)NC(DipN)(2) (2d) ((i)Pr = iso-propyl, Cy = cyclohexyl, (t)Bu = tert-butyl, and Dip = 2,6-disopropylphenyl) made in situ, and structurally characterized. The di-copper guanidinates systems with the general formula [Cu(2){L}(2)] (L = {Me(2)NC((i)PrN)(2)} (2a), {Me(2)NC(CyN)(2)} (2b), and {Me(2)NC(DipN)(2)} (2d) differed significantly from related amidinate complexes because of a large torsion of the dimer ring, which in turn is a result of transannular repulsion between adjacent guanidinate substituents. Attempts to synthesis the tert-butyl derivative [Cu(2){Me(2)NC((t)BuN)(2)}(2)] result in the separate formation and isolation of the tri-copper complexes [Cu(3){Me(2)NC((t)BuN)(2)}(2)(μ-NMe(2))] (3c) and [Cu(3){Me(2)NC((t)BuN)(2)}(2)(μ-Cl)] (4c), both of which have been unambiguously characterized by single crystal X-ray diffraction. Closer inspection of the solution state behavior of the lithium salt 1c reveals a previously unobserved equilibrium between 1c and its starting materials, LiNMe(2) and N,N'-di-tert-butyl-carbodiimide, for which activation enthalpy and entropy values of ΔH(?) = 48.2 ± 18 kJ mol(-1) and ΔS(?) = 70.6 ± 6 J/K mol have been calculated using 1D-EXSY NMR spectroscopy to establish temperature dependent rates of exchange between the species in solution. The molecular structures of the lithium complexes 1c and 1d have also been determined and shown to form tetrameric and dimeric complexes respectively held together by Li-N and agostic Li···H-C interactions. The thermal chemistry of the copper complexes have also been assessed by thermogravimetric analysis.  相似文献   

17.
18.
As the first 1st-row transition metal complexes having six tertiary amine donor groups, bis(triazacyclohexane) sandwich complexes [L2M](BF4)2 (L = benzyl- or p-fluorobenzyl-triazacyclohexane, M = Cu or Zn) have been obtained by the protonolysis of Et2Zn in the presence of L or by reaction of [Cu(MeCN)4](BF4) with L in CH2Cl2 and subsequent air oxidation via an unprecedented Cu(I)(2) sandwich complex containing a short Cu-Cu contact.  相似文献   

19.
Summary Novel mixed-ligand copper(I) complexes of general formula [TPP–Cu–(L)Cl] or [TPPhos–Cu–(L)Cl], where TPP=triphenylphosphine, TPPhos=triphenylphosphate and L=imidazolidine-2-thione [Imt],N-propylimidazolidice-2-thione [PrImt],N-i-propylimidazolidine-2-thione [iPrImt], and 1,3-diazinine-2-thione [Diaz] and bis coniplexes of formula [(L)2CuCl] where L=[PrImt] and [iPrImt] have been prepared and characterized by electronic, vibrational and n.m.r. spectroscopy. The spectral data are consistent with S-donation of thiones. The magnitude of upfield shift in13Cn.m.r. of the thionreide carbon on complexation has been interpreted in terms of coordination geometry around the metal stoms. X-ray structure analysis agrees with the conclusions from the spectroscopic measurements. The structure of [(PrImt)2CuCl] revealed three-coordinated copper(I) with crystal data:a=14.106(4),b=14.380(2),c=19.024(3) A, =108.8(2)°,z=8 and space group P2/c.  相似文献   

20.
Density functional theory (DFT) calculations have been carried out for a series of Cu(I) complexes bearing N-hexadentate macrocyclic dinucleating ligands and for their corresponding peroxo species (1c-8c) generated by their interaction with molecular O2. For complexes 1c-7c, it has been found that the side-on peroxodicopper(II) is the favored structure with regard to the bis(mu-oxo)dicopper(III). For those complexes, the singlet state has also been shown to be more stable than the triplet state. In the case of 8c, the most favored structure is the trans-1,2-peroxodicopper(II) because of the para substitution and the steric encumbrance produced by the methylation of the N atoms. Cu(II) complexes 4e, 5e, and 8e have been obtained by O2 oxidation of their corresponding Cu(I) complexes and structurally and magnetically characterized. X-ray single-crystal structures for those complexes have been solved, and they show three completely different types of Cu(II)2 structures: (a) For 4e, the Cu(II) centers are bridged by a phenolate group and an external hydroxide ligand. The phenolate group is generated from the evolution of 4c via intramolecular arene hydroxylation. (b) For 5e, the two Cu(II) centers are bridged by two hydroxide ligands. (c) For the 8e case, the Cu(II) centers are ligated to terminally bound hydroxide ligands, rare because of its tendency to bridge. The evolution of complexes 1c-8c toward their oxidized species has also been rationalized by DFT calculations based mainly on their structure and electrophilicity. The structural diversity of the oxidized species is also responsible for a variety of magnetic behavior: (a) strong antiferromagnetic (AF) coupling with J = -482.0 cm(-1) (g = 2.30; rho = 0.032; R = 5.6 x 10(-3)) for 4e; (b) AF coupling with J = -286.3 cm(-1) (g = 2.07; rho = 0.064; R = 2.6 x 10(-3)) for 5e; (c) an uncoupled Cu(II)2 complex for 8e.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号