首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
研究了n阶线性模糊微分方程的模糊初值问题,将n阶线性模糊微分方程转化成一阶线性模糊微分方程组,利用结构元方法将模糊线性微分方程组转化成两个分明的线性微分方程组,通过分明的线性微分方程组的解构造出原n阶线性模糊微分方程的解.最后,给出了具体的算例.  相似文献   

2.
In this paper, some new concepts in stability of fractional differential equations are offered from different perspectives. Hyers–Ulam–Rassias stability as well as Hyers–Ulam stability of a certain fractional differential equation are presented. The techniques rely on a fixed point theorem in a generalized complete metric space. Some applications of our results are also provided.  相似文献   

3.
In this paper, by measure theory, we introduce and investigate the concepts of (Stepanov-like) $(\mu,\nu)$-pseudo almost automorphic of class $r$ and class infinity, respectively. As applications, we establish some sufficient criteria for the existence, uniqueness of pseudo almost automorphic mild solutions to two-term fractional functional differential equations with finite or infinite delay. The working tools are based on the generalization of semigroup theory, Banach contraction mapping principle and Leray-Schauder alternative theorem. Finally, we explore the same topic for a fractional partial functional differential equation with delay.  相似文献   

4.
Uncertain differential equation is a type of differential equation driven by Liu process. So far, concepts of stability and stability in mean for uncertain differential equations have been proposed. This paper aims at providing a concept of almost sure stability for uncertain differential equation. A sufficient condition is given for an uncertain differential equation being almost surely stable, and some examples are given to illustrate the effectiveness of the sufficient condition.  相似文献   

5.
首先,我们给出了引入伴随方程(组)扩充原方程(组)的策略使给定偏微分方程(组)的扩充方程组具有对应泛瓯即,成为Lagrange系统的方法,以此为基础提出了作为偏微分方程(组)传统守恒律和对称概念的一种推广-偏微分方程(组)扩充守恒律和扩充对称的概念;其次,以得到的Lagrange系统为基础给定了确定原方程(组)扩充守恒律和扩充对称的方法,从而达到扩充给定偏微分方程(组)的首恒律和对称的目的;第三,提出了适用于一般形式微分方程(组)的计算固有守恒律的方法;第四,实现以上算法过程中,我们先把计算(扩充)守恒律和对称问题均归结为求解超定线性齐次偏微分方程组(确定方程组)的问题.然后,对此关键问题我们提出了用微分形式吴方法处理的有效算法;最后,作为方法的应用我们计算确定了非线性电报方程组在内的五个发展方程(组)的新守恒律和对称,同时也说明了方法的有效性.  相似文献   

6.
This paper is concerned with systems of ordinary differential equations with fuzzy parameters. Applying the Zadeh extension principle to the equations, we introduce the notions of fuzzy solutions and of componentwise fuzzy solutions. The fuzzy extension of the solution operator is shown to provide the unique fuzzy solution as well as the maximal componentwise fuzzy solution. A numerical algorithm based on monotonicity properties of membership functions is presented, together with a proof of convergence. In an interplay of interval analysis and possibility theory, these methods allow to process subjective information on the possible fluctuations of parameters in models involving ordinary differential equations. This is demonstrated in two engineering applications: a queueing model for earthwork and a model of oscillations of bell-towers.  相似文献   

7.
研究了具有Seikkala导数的n阶模糊微分方程的模糊初值问题,通过1-水平截集方程和左、右扩展方程的解构造出原模糊微分方程的解,给出了具体的算例.  相似文献   

8.
The purpose of this article is to acquaint the reader with the general concepts and capabilities of the Difference Potentials Method (DPM). DPM is used for the numerical solution of boundary-value and some other problems in difference and differential formulations. Difference potentials and DPM play the same role in the theory of solutions of linear systems of difference equations on multi-dimensional non-regular meshes as the classical Cauchy integral and the method of singular integral equations do in the theory of analytical functions (solutions Cauchy-Riemann system). The application of DPM to the solution of problems in difference formulation forms the first aspect of the method. The second aspect of the DPM implementation is the discretization and numerical solution of the Calderon-Seeley boundary pseudo-differential equations. The latter are equivalent to elliptical differential equations with variable coefficients in the domain; they are written making no use of fundamental solutions and integrals. Because of this fact ordinary methods for discretization of integral equations cannot be applied in this case. Calderon-Seeley equations have probably not been used for computations before the theory of DPM appeared. This second aspect for the implementation of DPM is that it does not require difference approximation on the boundary conditions of the original problem. The latter circumstance is just the main advantage of the second aspect in comparison with the first one. To begin with, we put forward and justify the main constructions and applications of DPM for problems connected with the Laplace equation. Further, we also outline the general theory and applications: both those already realized and anticipated.  相似文献   

9.
We present the studies on two kinds of solutions to random fuzzy differential equations (RFDEs). The different types of solutions to RFDEs are generated by the usage of two different concepts of fuzzy derivative in the formulation of a differential problem. Under generalized Lipschitz condition, the existence and uniqueness of both kinds of solutions to RFDEs are obtained. We show that solutions (of the same kind) are close to each other in the case when the data of the equation did not differ much. By an example, we present an application of each type of solutions in a population growth model which is subjected to two kinds of uncertainties: fuzziness and randomness.  相似文献   

10.
Fuzzy hyperbolic partial differential equation, one kind of uncertain differential equations, is a very important field of study not only in theory but also in application. This paper provides a theoretical foundation of numerical solution methods for fuzzy hyperbolic equations by considering sufficient conditions to ensure the existence and uniqueness of fuzzy solution. New weighted metrics are introduced to investigate the solvability for boundary valued problems of fuzzy hyperbolic equations and an extended result for more general classes of hyperbolic equations is initiated. Moreover, the continuity of the Zadeh’s extension principle is used in some illustrative examples with some numerical simulations for \(\alpha \) -cuts of fuzzy solutions.  相似文献   

11.
The fractional stochastic differential equations have wide applications in various fields of science and engineering. This paper addresses the issue of existence of mild solutions for a class of fractional stochastic differential equations with impulses in Hilbert spaces. Using fractional calculations, fixed point technique, stochastic analysis theory and methods adopted directly from deterministic fractional equations, new set of sufficient conditions are formulated and proved for the existence of mild solutions for the fractional impulsive stochastic differential equation with infinite delay. Further, we study the existence of solutions for fractional stochastic semilinear differential equations with nonlocal conditions. Examples are provided to illustrate the obtained theory.  相似文献   

12.
We study a linear differential equation with bounded aftereffect and establish conditions for the exponential and uniform stability of its solution in the form of domains in the parameter space. We construct examples that show the exactness of boundaries of stability domains for two classes of functional differential equations with concentrated and distributed delays. Along with classical methods of the functional analysis and function theory, we also use the test equations method.  相似文献   

13.
We study the stability of solutions of fuzzy differential equations by Lyapunov's second method. By using scale equations and the comparison principle for Lyapunov-like functions, we give sufficient criteria for the stability and asymptotic stability of solutions of fuzzy differential equations. __________ Published in Ukrains'kyi Matematychnyi Zhurnal, Vol. 57, No. 7, pp. 904–911, July, 2005.  相似文献   

14.
In the present paper we investigate some uniqueness and Ulam’s type stability concepts of fixed point equations due to Rus, for the Darboux problem of partial differential and integro-differential equations involving the Caputo fractional derivative. Our results are obtained by using weakly Picard operators theory.  相似文献   

15.
《随机分析与应用》2013,31(2):403-427
Abstract

In this paper, we set up the comparison theorem between the mild solution of semilinear time-delay stochastic evolution equation with general time-delay variable and the solution of a class (1-dimension) deterministic functional differential equation, by using the Razumikhin–Lyapunov type functional and the theory of functional differential inequalities. By applying this comparison theorem, we give various types of the stability comparison criteria for the semilinear time-delay stochastic evolution equations. With the aid of these comparison criteria, one can reduce the stability analysis of semilinear time-delay stochastic evolution equations in Hilbert space to that of a class (1-dimension) deterministic functional differential equations. Furthermore, these comparison criteria in special case have been applied to derive sufficient conditions for various stability of the mild solution of semilinear time-delay stochastic evolution equations. Finally, the theories are illustrated with some examples.  相似文献   

16.
Strict stability for a nonlinear system of impulsive differential equations with ‘supremum’ is defined and studied. Razhumikhin method with piecewise continuous scalar Lyapunov functions and comparison results for scalar impulsive differential equations are the bases of the main proofs. To unify a variety of stability concepts and to offer a general framework for the investigation of the stability theory, the notion of stability in terms of two measures has been applied. An example illustrating the usefulness of the obtained sufficient conditions is also included.  相似文献   

17.
W. Kerscher  R. Nagel 《Acta Appl Math》1984,2(3-4):297-309
In this paper we survey the Perron-Frobenius spectral theory for positive semigroups on Banach lattices and indicate its applications to stability theory of retarded differential equations and quasi-periodic flows.  相似文献   

18.
The Darboux theory of integrability for planar polynomial differential equations is a classical field, with connections to Lie symmetries, differential algebra and other areas of mathematics. In the present paper we introduce the concepts, problems and inverse problems, and we outline some recent results on inverse problems. We also prove a new result, viz. a general finiteness theorem for the case of prescribed integrating factors. A?number of relevant examples and applications is included.  相似文献   

19.
20.
The purpose of this paper is to study a class of delay differential equations with two delays. first, we consider the existence of periodic solutions for some delay differential equations. Second, we investigate the local stability of the zero solution of the equation by analyzing the correlocal stability of the zero solution of the equation by analyzing the corresponding characteristic equation of the linearized equation. The exponential stability of a perturbed delay differential system with a bounded lag is studied. Finally, by choosing one of the delays as a bifurcation parameter, we show that the equation exhibits Hopf and saddle-node bifurcations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号