首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an analytical solution for the interaction of electric potentials,electric displacements,elastic deformations,and thermoelasticity,and describes electromagnetoelastic responses and perturbation of the magnetic field vector in hollow structures(cylinder or sphere),subjected to mechanical load and electric potential.The material properties,thermal expansion coefficient and magnetic permeability of the structure are assumed to be graded in the radial direction by a power law distribution.In the present model we consider the solution for the case of a hollow structure made of viscoelastic isotropic material,reinforced by elastic isotropic fibers,this material is considered as structurally anisotropic material.The exact solutions for stresses and perturbations of the magnetic field vector in FGM hollow structures are determined using the infinitesimal theory of magnetothermoelasticity,and then the hollow structure model with viscoelastic material is solved using the correspondence principle and Illyushin’s approximation method.Finally,numerical results are carried out and discussed.  相似文献   

2.
Analytical studies for magnetoelastic behavior of functionally graded material (FGM) cylindrical and spherical vessels placed in a uniform magnetic field, subjected to internal pressure are presented. Exact solutions for displacement, stress and perturbation of magnetic field vector in FGM cylindrical and spherical vessels are determined by using the infinitesimal theory of magnetoelasticity. The material stiffness and magnetic permeability obeying a simple power law are assumed to vary through the wall thickness and Poisson’s ratio is assumed constant. Stresses and perturbation of magnetic field vector distributions depending on an inhomogeneous constant are compared with those of the homogeneous case and presented in the form of graphs. The inhomogeneous constant, which includes continuously varying volume fraction of the constituents, is empirically determined. The values used in this study are arbitrary chosen to demonstrate the effect of inhomogeneity on stresses and perturbation of magnetic field vector distributions.  相似文献   

3.
In this paper, the mechanical responses of a thick-walled functionally graded hollow cylinder subject to a uniform magnetic field and inner-pressurized loads are studied. Rather than directly assume the material constants as some specific function forms displayed in pre-studies, we firstly give the volume fractions of different constituents of the functionally graded material (FGM) cylinder and then determine the expressions of the material constants. With the use of the Voigt method, the corresponding analytical solutions of displacements in the radial direction, the strain and stress components, and the perturbation magnetic field vector are derived. In the numerical part, the effects of the volume fraction on the displacement, strain and stress components, and the magnetic perturbation field vector are investigated. Moreover, by some appropriate choices of the material constants, we find that the obtained results in this paper can reduce to some special cases given in the previous studies.  相似文献   

4.
In this article, an analytical method is developed to obtain the response of magnetothermoelastic stress and perturbation of the magnetic field vector for a thick-walled spherical functionally graded materials (FGM) vessel. The vessel, which is placed in a uniform magnetic field, is subjected to an internal pressure and transient temperature gradient. Using the Hankel and Laplace transform techniques, the dynamic equation of magnetothermoelastic is solved and the radial and circumferential stresses as well as the perturbation of the magnetic field vector for a typical material are obtained. Moreover, the effect of magnetic field vector and material inhomogeneity on the stresses is investigated.  相似文献   

5.
A postbuckling analysis is presented for a functionally graded cylindrical shell subjected to torsion in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic non-linearity. The non-linear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling load and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of twist, perfect and imperfect, FGM cylindrical shells under different sets of thermal fields. The results reveal that the volume fraction distribution of FGMs has a significant effect on the buckling load and postbuckling behavior of FGM cylindrical shells subjected to torsion. They also confirm that the torsional postbuckling equilibrium path is weakly unstable and the shell structure is virtually imperfection–insensitive.  相似文献   

6.
A postbuckling analysis is presented for a simply supported, shear deformable functionally graded plate with piezoelectric actuators subjected to the combined action of mechanical, electrical and thermal loads. The temperature field considered is assumed to be of uniform distribution over the plate surface and through the plate thickness and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. The initial geometric imperfection of the plate is taken into account. Two cases of the in-plane boundary conditions are considered. A two step perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, geometrically mid-plane symmetric FGM plates with fully covered or embedded piezoelectric actuators under different sets of thermal and electric loading conditions. The effects played by temperature rise, volume fraction distribution, applied voltage, the character of in-plane boundary conditions, as well as initial geometric imperfections are studied.  相似文献   

7.
The statistics (i.e., mean and variance) of temperature and thermal stress are analytically obtained in functionally graded material (FGM) plates with uncertainties in the thermal conductivity and coefficient of linear thermal expansion. These FGM plates are assumed to have arbitrary nonhomogeneous thermal and mechanical properties through the entire thickness of plate and are subjected to deterministic convective heating. The stochastic temperature and thermal stress fields are analysed by assuming the FGM plate is multilayered with distinct, random thermal conductivity and coefficient of linear thermal expansion in each layer. Vodicka’s method, which is a type of integral transform method, and a perturbation method are employed to obtain the analytical solutions for the statistics. The autocorrelation coefficients of each random property and cross-correlation coefficients between different random properties are expressed in exponential function forms as a non-homogeneous Markov random field of discrete space. Numerical calculations are performed for FGM plates composed of partially stabilised zirconia (PSZ) and austenitic stainless steel (SUS304), which have the largest dispersion of the random properties at the place where the volume fractions of the two constituent materials are both 0.5. The effects of the spatial change in material composition, thermal boundary condition and correlation coefficients on the standard deviations of the temperature and thermal stress are discussed.  相似文献   

8.
Plane strain analytical solutions to estimate purely elastic, partially plastic and fully plastic deformation behavior of rotating functionally graded (FGM) hollow shafts are presented. The modulus of elasticity of the shaft material is assumed to vary nonlinearly in the radial direction. Tresca’s yield criterion and its associated flow rule are used to formulate three different plastic regions for an ideal plastic material. By considering different material compositions as well as a wide range of bore radii, it is demonstrated in this article that both the elastic and the elastoplastic responses of a rotating FGM hollow shaft are affected significantly by the material nonhomogeneity.  相似文献   

9.
In this paper a thick hollow cylinder with finite length made of two dimensional functionally graded material (2D-FGM) subjected to transient thermal boundary conditions is considered. The volume fraction distribution of materials, geometry and thermal boundary conditions are assumed to be axisymmetric but not uniform along the axial direction. The finite element method with graded material properties within each element is used to model the structure and the Crank–Nicolson finite difference method is implemented to solve time dependent equations of the heat transfer problem. Two-dimensional heat conduction in the cylinder is considered and variation of temperature with time as well as temperature distribution through the cylinder are investigated. Effects of variation of material distribution in two radial and axial directions on the temperature distribution and time response are studied. The achieved results show that using two-dimensional FGM leads to a more flexible design so that transient temperature, maximum amplitude and uniformity of temperature distributions can be modified to achieve required specifications by selecting a suitable material distribution profile in two directions.  相似文献   

10.
在Hamilton体系下,基于Euler梁理论研究了功能梯度材料梁受热冲击载荷作用时的动力屈曲问题;将非均匀功能梯度复合材料的物性参数假设为厚度坐标的幂函数形式,采用Laplace变换法和幂级数法解析求得热冲击下功能梯度梁内的动态温度场:首先将功能梯度梁的屈曲问题归结为辛空间中系统的零本征值问题,梁的屈曲载荷与屈曲模态分别对应于Hamilton体系下的辛本征值和本征解问题,由分叉条件求得屈曲模态和屈曲热轴力,根据屈曲热轴力求解临界屈曲升温载荷。给出了热冲击载荷作用下一类非均匀梯度材料梁屈曲特性的辛方法研究过程,讨论了材料的梯度特性、结构几何参数和热冲击载荷参数对临界温度的影响。  相似文献   

11.
In this article, static analysis of functionally graded, anisotropic and linear magneto-electro-elastic plates have been carried out by semi-analytical finite element method. A series solution is assumed in the plane of the plate and finite element procedure is adopted across the thickness of the plate such a way that the three-dimensional character of the solution is preserved. The finite element model is derived based on constitutive equation of piezomagnetic material accounting for coupling between elasticity, electric and magnetic effect. The present finite element is modeled with displacement components, electric potential and magnetic potential as nodal degree of freedom. The other fields are calculated by post-computation through constitutive equation. The functionally graded material is assumed to be exponential in the thickness direction. The numerical results obtained by the present model are in good agreement with available functionally graded three-dimensional exact benchmark solutions given by Pan and Han [Pan, E., Han, F., in press. Green’s function for transversely isotropic piezoelectric functionally graded multilayered half spaces. Int. J. Solids Struct.]. Numerical study includes the influence of the different exponential factor, magneto-electro-elastic properties and effect of mechanical and electric type of loading on induced magneto-electro-elastic fields. In addition further study has been carried out on non-homogeneous transversely isotropic FGM magneto-electro-elastic plate available in the literature [Chen, W.Q., Lee, K.Y., Ding, H.J., 2005. On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates].  相似文献   

12.
Nonlinear vibration of beams made of functionally graded materials (FGMs) is studied in this paper based on Euler-Bernoulli beam theory and von Kármán geometric nonlinearity. It is assumed that material properties follow either exponential or power law distributions through thickness direction. Galerkin procedure is used to obtain a second order nonlinear ordinary equation with quadratic and cubic nonlinear terms. The direct numerical integration method and Runge-Kutta method are employed to find the nonlinear vibration response of FGM beams with different end supports. The effects of material property distribution and end supports on the nonlinear dynamic behavior of FGM beams are discussed. It is found that unlike homogeneous beams, FGM beams show different vibration behavior at positive and negative amplitudes due to the presence of quadratic nonlinear term arising from bending-stretching coupling effect.  相似文献   

13.
Within the framework of three-dimensional elasticity theory, this paper investigates the thermal response of functionally graded annular plates in which the material can be transversely isotropic and vary along the thickness direction in an arbitrary manner. The generalized Mian and Spencer method is utilized to obtain the analytical solutions of annular plates under a through-thickness steady temperature field. The present analytical solutions are validated through comparisons against those available in open literature. A parametric study is conducted to examine the effects of gradient distribution, different temperature fields, different diameter ratio and boundary conditions on the deformation and stress fields of the plate. The results show that these factors can have obvious effects on the thermo-elastic behavior of functionally gradient materials(FGM)annular plates.  相似文献   

14.
In this paper, an exact analytical solution is presented for a transversely isotropic functionally graded magneto-electro-elastic (FGMEE) cantilever beam, which is subjected to a uniform load on its upper surface, as well as the concentrated force and moment at the free end. This solution can be applied for any form of gradient distribution. For the basic equations of plane problem, all the partial differential equations governing the stress field, electric, and magnetic potentials are derived. Then, the expressions of Airy stress, electric, and magnetic potential functions are assumed as quadratic polynomials of the longitudinal coordinate. Based on all the boundary conditions, the exact expressions of the three functions can be determined. As numerical examples, the material parameters are set as exponential and linear distributions in the thickness direction. The effects of the material parameters on the mechanical, electric, and magnetic fields of the cantilever beam are analyzed in detail.  相似文献   

15.
在某些边界条件下,功能梯度材料(FGM)梁会由于拉弯耦合产生前屈曲耦合变形,而该变形对FGM梁的稳定性有影响。本文假设FGM梁的材料性质只沿厚度方向进行变化,基于经典非线性梁理论和物理中面概念,推导出FGM梁的平衡方程以及包含前屈曲耦合变形影响的屈曲控制方程,并用打靶法进行数值求解。讨论了前屈曲耦合变形、梯度指数以及材料性质的温度依赖等因素对FGM梁非线性变形和稳定性的影响。  相似文献   

16.
This study attempts to derive the statistics of temperature and thermal stress in functionally graded material (FGM) plates exposed to random external temperatures. The thermomechanical properties of the FGM plates are assumed to vary arbitrarily only in the plate thickness direction. The external temperatures are expressed as random functions with respect to time. The transient temperature field in the FGM plate is determined by solving a nonhomogeneous heat conduction problem for a multilayered plate with linear nonhomogeneous thermal conductivity and different homogeneous heat capacity in each layer. The autocorrelations and power spectrum densities (PSDs) of temperature and thermal stress are derived analytically. These statistics for FGM plates composed of partially stabilised zirconia (PSZ) and austenitic stainless steel (SUS304) are computed under the condition that the fluctuation in the external temperature can be considered as white noise or a stationary Markov process.  相似文献   

17.
Both of the frictional heat and thermal contact resistance have a grave responsibility for the localized high temperature (hot spots) at the contact region, which is known as one of the most dangerous appearances in the brakes systems. In this paper, we study the thermoelastic instability (TEI) of a functionally graded material (FGM) half-plane sliding against a homogeneous half-plane at the in-plane direction. The interaction of the frictional heat and thermal contact resistance is taken into account in the TEI analysis. The material properties of the FGM half-plane are supposed to follow the exponential function along the thickness direction. The coupled TEI problem of FGMs is solved by using the perturbation method. The frictionally excited TEI of FGMs is also considered by neglecting the effect of the thermal contact resistance. The results show that the thermal contact resistance, sliding speed and gradient index have significant influence on the TEI. It is found that the variation of the gradient index of FGMs can increase the critical sliding speed and critical heat flux, and therefore improve the TEI of the sliding system.  相似文献   

18.
利用微分方程的级数求解方法,分析了两端简支的有限长功能梯度圆筒的轴对称稳态热弹性问题,推导出了稳态温度场与应力场的解析解。分析中采用指数函数模型来描述FGM圆筒中材料性能在厚度方向的连续变化,同时忽略温度对材料性能的影响。另外,论文以金属钼和多铝红柱石制成的功能梯度圆筒为例,给出了稳态温度场和应力场的数值结果。  相似文献   

19.
In this paper, natural frequencies characteristics of a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) based on three-dimensional equations of elasticity is considered. The axisymmetric conditions are assumed for the 2D-FGM cylinder. The material properties of the cylinder are varied in the radial and axial directions with power law functions. Effects of volume fraction distribution and FGM configuration on the natural frequencies of a simply supported cylinder are analyzed. Also, the effects of length and thickness of the cylinder are considered for different material distribution profiles. Three-dimensional equations of motion are used and the eigen value problem is developed based on direct variational method. Finite element method with graded material characteristics within each element of the structure is used for solution. The study shows that the 2D-FGM cylinder exhibit interesting frequency characteristics when the constituent volume fractions and its configuration are varied.  相似文献   

20.
In this paper, the nonlinear transient dynamic response of functionally graded material(FGM) sandwich doubly curved shell with homogenous isotropic material core and functionally graded face sheet is analyzed using a new displacement field on the basis of Reddy's third-order shear theory for the first time. The equivalent material properties for the FGM face sheet are assumed to obey the rule of simple power law function in the thickness direction.Based on Reddy'stheory of higher shear deformation, a new displacement field is developed by introducing the secant function into transverse displacement. Four coupled nonlinear differential equations are obtained by applying Hamilton's principle and Galerkin method. It is assumed that the FGM sandwich doubly curved shell is subjected to step loading, air-blast loading,triangular loading, and sinusoidal loading, respectively. On the basis of double-precision variablecoefficient ordinary differential equation solver, a new program code in FORTRAN software is developed to solve the nonlinear transient dynamics of the system. The influences of core thickness, volume fraction, core-to-face sheet thickness ratio, width-to-thickness ratio and blast type on the transient response of the shell are discussed in detail through numerical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号