首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper(II) salts were reacted with various quinoline aldehyde chalcogensemicarbazones to yield compounds formulated as Cu(HL)X2 · nH2O (I: HL = quinoline aldehyde thiosemicarbazone (HL1), X = ClO4, n = 2; II: HL = quinoline aldehyde 4-C2H5-thiosemicarbazone (HL1a), X = NO3, n = 0; III: HL = quinoline aldehyde semicarbazone (HL2), X = ClO4, n = 3 and IV: HL = quinoline aldehyde 4-Ph-semicarbazone (HL2a), X = NO3, n = 1). Regardless of the reagent ratio, the products were compounds having the metal: ligand ratio of 1: 1, where the organic ligand was coordinated tridentate in a molecular form. Single-crystal X-ray diffraction showed that, depending on the chalcogen atom in the organic ligand (S or O), the substituent in the 4th position (at the terminal nitrogen atom), and the specifics of the acido ligand, complexes I–IV had appreciably differing molecular structure organizations. The structures of I and III are formed by a 1D charged coordination polymer, ClO 4 ? anions, and water molecules and may be described by the formula [Cu(HL)(H2O)(ClO4)] n (ClO4) n · nH2O. Copper(II) coordination polyhedra in I and II are (4 + 2) and (4 + 1 + 1) tetragonal bipyramids, respectively. In II and IV, the structures are monomeric and can be described as [Cu(HL1a)(NO3)2] with the metal coordination polyhedron shaped as a (4 + 1) tetragonal pyramid in II and as [Cu(HL2a)(H2O)(NO3)](NO3) with the metal coordination polyhedron shaped as a (3 + 2) trigonal bipyramid in IV. The structure of II is built of molecular complexes, each comprising, apart from ligand HL1a, two monodentate coordinated NO 3 ? groups. The oxygen atom of one anion together with the NNS donor atom set of ligand HL1a form the base, and the oxygen atom of the other anion is in the apex of the coordination polyhedron. In IV, the structure is ionic and built of NO 3 ? anions and [Cu(HL2a)(H2O)(NO3)]+ complex cations, where a cationic coordination polyhedron has a trigonal-bipyramidal configuration with organic ligand HL2a positioned along the long edge. The bipyramidal base is made up by the oxygen atoms of the coordinated water molecule and monodentate nitrato group and the nitrogen atom N2 of the azomethyne group.  相似文献   

2.
A series of new 3d-metal complexes based on 2-amino-3-(1-methylbenzimidazol-2-yl)-4(5H)-ketothiophen (HL1) and 2-amino-3-(2-benzothiazolyl)-4(5H)-ketothiophen (HL2) were synthesized. Compounds of the general formulas [ML2] and [M(HL1)2Cl2] (where M = Co2+, Ni2+, Zn2+, Cu2+) were prepared by the reaction of the above mentioned ligands with the corresponding acetate (for [ML2]) or chloride (for [M(HL1)2Cl2]) salts in a methanol or a methanol–chloroform medium. The choice of the anion in the initial metal salt, as well as the selection of the ligand, is crucial for obtaining coordination compounds with a neutral or deprotonated form of the 2-amino-4(5H)-ketothiophens. Thus, in contrast to HL1, complexes with the neutral form of HL2 cannot be obtained under the same conditions. All the complexes were studied by spectroscopic methods and X-ray crystallography (for [CuL12] · H2O). The coordination polyhedron of the copper atom is formed by four nitrogen atoms from two ligand anions and the geometry of the coordination sphere is intermediate between tetrahedral and square-planar.  相似文献   

3.
New complexes of bivalent Co, Ni, and Cu with isatin aminoguanisone (HL) and nitroaminoguanisone (HL1) of the composition ([Co(HL)2]Cl2 (I), [Ni(HL)2]Cl2 (II), [Cu(L)Cl] (III), [Co(L1)2] (IV), [Ni(L1)2] (V), and [Cu(L1)2] (VI) are synthesized. Their molecular conductivities and effective magnetic moments are measured and thermal stabilities are studied. The type of the ligand coordination in IVI is proposed on the basis of IR data. The summary of physicochemical data for IVI and the energy calculations for their molecules by the molecular mechanics method made it possible to establish stoichiometry of the coordination polyhedra of the complexes.  相似文献   

4.
A series of compounds of the general formula Cu(HL)X2 · nH2O (compound I, X = ClO4, n = 3; compound II, X = NO3, n = 2; compound III, X = Cl, n = 0.5; compound IV, X = 1/2SO4, n = 0) is isolated by the reactions of the copper(II) salts with quinolinaldehyde semicarbazone (HL). Regardless of the reactant ratio, only the compounds with a metal to ligand mole ratio of 1: 1 are formed, where the organic reactant is coordinated in the molecular form. The X-ray diffraction analyses of the [Cu(HL)(NO3)(H2O)](NO3) · H2O (II) and [Cu(HL)Cl2] · 0.5H2O(III) compounds show their substantially different organizations of the molecular structures depending on the specifics of the acido ligand. An ionic structure with one NO 3 ? anion incorporated into the inner coordination sphere of the metal as a bidentate chelate ligand is observed in compound II. Molecular tetragonal pyramidal complexes associated into a dimer due to the bridging function of one coordinated Cl? anion are formed in structure III. The coordination polyhedron of the copper atom in structures II and III is an asymmetrically extended tetragonal bipyramid. The CuClCu angle equal to 90° and the distance between two planes in compound III equal to 2.978 Å determine the insignificant antiferromagnetic interaction in this compound (g = 2.1, J = ?2.5 cm?1).  相似文献   

5.
Abstract

The preparation and physical characterization of two copper(I) complexes Cu(HL)NO3 and [Cu(HL)2]NO3·MeOh formed with a newly synthesized tridentate [S,N,P] HL = 2-(diphenylphosphino)benzaldehyde thiosemicarbazone ligand and the crystal structure analysis of the latter have been carried out. An X-ray study of [Cu(HL)2]NO3·MeOH revealed a copper(I) ion coordinated tetrahedrally to S,N,P,P atoms donated by two HL ligands. One is tridentate [S,N,P], whereas the second HL ligand is monodentate, ligating only its phosphorus atom to the copper. The geometry around the four-coordinate Cu(I) is comparable with Cu{N,S,P,X} tetrahedra (X = N, P, or S) retrieved from the Cambridge Structural Database. In addition, with a restriction to Cu{N,P,X,X} (X = C,N,P) tetrahedra ‐ S is excluded ‐ ca. 60 structures against  相似文献   

6.
张曙光  冯云龙 《中国化学》2009,27(5):877-881
四唑酸(–CN4H)与羧酸(–COOH)具有相似的酸性。对苯酚四唑硫酮(H2L)可以作为单齿(–S或–N)或双齿(–N, N或–N, S)配体与金属离子配位形成配位化合物。合成了4个以H2L为配体的金属(II)配合物:Co(HL)2(Py)2(H2O)2 (1), [Mn(HL)2(H2O)4]·2H2O (2), Mn(HL)2(Phen)2 (3), and [Zn(HL)2(Phen)2]·0.5H2O·1.5CH3OH (4),并用X−射线单晶衍射法测定了晶体结构。晶体结构分析表明,在这些配合物中所有的中心金属原子均呈现六配位的八面体构型。在配合物1和2中,HL–配体以氧原子与中心金属原子配位,而在配合物3和4中HL–配体则以硫原子与中心金属原子配位。  相似文献   

7.
A mononuclear complex [Cu(HL · S)2(NO3)2] ( 1 ) and a one‐ dimensional coordination polymer [Cu(HL · S)Cl2]n ( 2 ) [HL · S = 4‐(pyridin‐2‐ylmethyl)tetrahydro‐2H‐thiopyran‐4‐ol] showcase the structure‐directing role of the counterions in their formation reaction: monodentate ligation of NO3 and Cl induces an octahedral (with two HL · S per Cu in 1 ) or trigonal‐bipyramidal (with one HL · S per Cu in 2 ) CuII coordination environment. In contrast to 1 exhibiting no coordinative metal–sulfur bonds in the crystal lattice (space group P21/c), 2 (P21/c) features intermolecular Cu–S contacts of 2.3188(7) Å. The coordination compounds are thermally stable up to ca. 160 °C. Whereas 1 demonstrates the spin‐like behavior of an isolated central CuII ion, compound 2 exhibits weak antiferromagnetic intra‐chain coupling with J ≈ –2.1 cm–1 between neighboring CuII ions.  相似文献   

8.
New zinc (II), copper (II), nickel (II) and cobalt (III) complexes, [Zn (HL)2]I2 (1) , [Cu (HL)Cl2] (2) , [Cu (HL)Br2] (3) , [Cu (HL)(H2O)2](ClO4)2 (4) , [Ni (HL)2]I2·H2O (5) , [Co(L)2]Cl (6) , [Co(L)2]NO3 (7) , [Co(L)2]I·[Co(L)2](I3) (8) were obtained with 2-formylpyridine 4-allyl-S-methylisothiosemicarbazone ( HL ). The isothiosemicarbazone ligand was characterized by NMR (1H and 13C), IR spectroscopy and X-ray diffraction. All the complexes were characterized by elemental analysis, IR, UV–Vis, ESI-MS spectroscopy, molar conductivity, magnetic susceptibility measurements. X-ray diffraction analysis on the monocrystal and powder elucidated the structure of the complexes 1 , 5 , 7 and 8 . The ligand and the complexes were tested for their antioxidant and antimicrobial activity against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Candida albicans. Also, the antiproliferative properties of these compounds on human leukemia HL-60, human cervical epithelial HeLa, human epithelial pancreatic adenocarcinoma BxPC-3, human muscle rhabdomyosarcoma spindle, large multinucleated RD cells and normal MDCK cells have been investigated. The nickel complex 5 and cobalt complexes 6 , 7 showed promising antiproliferative activity and low toxicity.  相似文献   

9.
Reaction of Cu(NO3)2 · 3H2O, 1-(N-salicyalideneimine)-2-(N,N-dimethyl)-aminoethane (HL1), LiClO4, and sodium dicyanamide (Nadca) in aqueous medium affords a dimeric complex [Cu2(L1)21, 5-dca)](ClO4) (1). Single crystal X-ray analysis reveals that 1 is dinuclear with copper(II) ions bridged by a single dicyanamide group in end-to-end fashion. The coordination environment around copper(II) is square planar. Two nitrogens and oxygen of the tridentate Schiff-base ligand (HL1) occupy three coordination sites of the square plane while the remaining site is occupied by the nitrogen of a terminal nitrile of the bridging dca. The nitrogen of the other terminal nitrile group of the μ1,5-dca ligand connects a neighboring [CuL1] unit to yield [Cu2(L1)21,5-dca)](ClO4) (1). Variable temperature magnetic susceptibility measurements show that the magnetic interaction is ferromagnetic (J = 1.93 cm?1). The results of a magnetic model are in good agreement with the experimental data.  相似文献   

10.
Two two‐dimensional supramolecular copper(II) and cobalt(III) complexes, Cu(L1)2 ( 1 ; HL1 = 2‐hydroxy‐3‐methoxybenzaldehyde oxime) and [Co(L2)2]2⋅2CH3COOCH2CH3 ( 2 ; HL2 = 1‐(2‐{[(E )‐3‐methoxy‐2‐hydroxybenzylidene]amino}phenyl)ethanone oxime), have been synthesized via complexation of Cu(II) nitrate trihydrate and Co(II) acetate tetrahydrate with HL. A plausible reaction mechanism for the formation of HL1 is proposed. HL was synthesized and characterized using infrared, 1H NMR and 13C NMR spectra, as well as elemental analysis. Complexes 1 and 2 were investigated using single‐crystal X‐ray diffraction and have a 2:1 ligand‐to‐metal ratio. Different geometric features of both complexes are observed. In their crystal structures, 1 and 2 form infinite two‐dimensional structures and 2 forms a three‐dimensional supramolecular framework. Electron paramagnetic resonance spectra of 1 and 2 were also investigated. Moreover, thermal and electrochemical properties and antimicrobial activity of 2 were also studied. In addition, the calculated HOMO and LUMO energies show the character of complex 1 .  相似文献   

11.
Two coordination polymers, namely [Cd(HL)2]n · nH2O ( 1 ) and [Zn(L)]n ( 2 ) (H2L = benzimidazole‐2‐butanoic acid), were prepared by solvothermal reaction of Cd(NO3)2 or Zn(NO3)2 and H2L. The structures of these two compounds were determined by the single‐crystal X‐ray diffraction analyses and further characterized by IR spectroscopy, elemental analyses, powder X‐ray diffraction analyses, and thermal analyses. Compound 1 is a two‐dimensional (2D) layer framework, which is further packed into a 3D supramolecular framework by intermolecular hydrogen bonds, whereas compound 2 is a three‐dimensional (3D) framework with 3‐connected etb topology. The H2L ligand in compounds 1 and 2 displays two different anionic forms (HL and L2–), which then adopt two different coordination modes. Moreover, thermal stabilities and luminescent properties of these two compounds were also investigated.  相似文献   

12.
The reaction of [Cp2Mo2(CO)4(μ,η2:2-E2)] ( A : E=P, B : E=As, Cp=C5H5) with the WCA-containing CuI salts ([Cu(CH3CN)4][Al{OC(CF3)3}4] (CuTEF, C ), [Cu(CH3CN)4][BF4] ( D ) and [Cu(CH3CN)3.5][FAl{OC6F10(C6F5)}3] (CuFAl, E )) affords seven unprecedented coordination compounds. Depending on the E2 ligand complex, the counter anion of the copper salt and the stoichiometry, four dinuclear copper dimers and three trinuclear copper compounds are accessible. The latter complexes reveal first linear Cu3 arrays linked by E2 units (E=P, As) coordinated in an η2:1:1 coordination mode. All compounds were characterized by X-ray crystallography, NMR and IR spectroscopy, mass spectrometry and elemental analysis. To define the nature of the Cu⋅⋅⋅Cu⋅⋅⋅Cu interactions, DFT calculations were performed.  相似文献   

13.
Two Schiff bases, 1-acetylferrocene thiosemicarbazone (HL1) and 1,1′-diacetyl-ferrocene dithiosemicarbazone (H2L2) and their copper(II) complexes were prepared and characterized by elemental analysis, magnetic susceptibility, conductivity, and spectral (IR, UV–Vis, ESR) measurements The IR spectra showed that HL1 acts as neutral or monobasic bidentate ligand, coordinating to copper(II) through either thiono- or thiolo-sulphur and azomethine-N atoms, whereas H2L2 is a neutral or dibasic mononucleating or binucleating quadridentate ligand coordinating through the same atoms. Other spectral measurements indicate that complexes [(L1)2Cu], [(L2)Cu] and [(HL1)2Cu]X2, X?=?Cl, Br or ClO4 have square-planar geometry around copper(II) while [(HL1)CuX2] and [(H2L2)Cu2X4], X?=?Cl or Br, have distorted tetrahedral geometry. The biological activity studies of the complexes and the free ligands towards two gram positive and two gram negative bacteria and one fungal species have been studied and the potential is related to the nature and structure of the tested compounds.  相似文献   

14.
Four copper(II) complexes and one copper(I) complex with pyridine-containing pyridylalkylamide ligands N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (HLpz) and N-(2-(pyridin-2-yl)ethyl)pyrazine-2-carboxamide (HLpz?) were synthesized and characterized. The X-ray crystal structures of [Cu2(Lpz)2(4,4?-bipy)(OTf)2] (1, OTf?=?trifluoromethanesulfonate, 4,4?-bipy?=?4,4?-bipyridine) and [Cu(Lpz)(py)2]OTf·H2O (2, py?=?pyridine) revealed binuclear and mononuclear molecular species, respectively, while [Cu(Lpz)(μ2-1,1-N3)]n (3), [Cu(Lpz?)(μ2-1,3-N3)]n (4), and [Cu(HLpz)Cl]n (5) are coordination polymer 1-D chains in the solid state.  相似文献   

15.
Piperanol thiosemicarbazone (HL) has been interacted with Ag+, Co(II), Ni(II) or Cu(II) binary to produce [Ag(HL)]EtOH · NO3, [Ag2(L)(H2O)2]NO3, [Co(L)3], [Cu(L)(H2O)3(OAc)]H2O or [Ni(L)2] and template with Ag+ to form [Cu2Ag2(L)2(OH)2(H2O)4]NO3 and [NiAg(L)2(H2O)2]NO3. The prepared complexes are characterized by microanalysis, thermal, magnetic and spectral (IR, 1H NMR, ESR and electronic) studies. Ag+ plays an important role in the complex formation. The variation in coordination may be due to the presence of two different metal ions and the preparation conditions. The outside nitrate is investigated by IR spectra. The outer sphere solvents are detected by IR and thermal analysis. Ni(II) complexes are found diamagnetic having a square-planar geometry. Cu(II) is reduced by the ligand to Cu(I). The cobalt complex is found diamagnetic confirming an air oxidation of Co(II) to Co(III) having a low spin octahedral geometry. The ligand and its metal complexes are found reducing agents which decolorized KMnO4 solution in 2N H2SO4. CoNS and NiNS are the residual parts in the thermal decomposition of [Co(L)3] and [Ni(L)2].  相似文献   

16.
合成并通过单晶衍射、元素分析及红外光谱表征了配合物[Ag2(HL)(NO32]n1)的结构(HL为3-乙基-2-乙酰吡嗪缩4-苯基氨基脲)。单晶衍射结果表明,配合物1中,HL作为中性四齿配体连接2个Ag(I)中心,其中一个Ag(I)中心与HL配体中的ON2供体(羰基O,亚胺N和吡嗪N1原子)和2个单齿硝酸根配位,构成扭曲的四方锥配位构型;而另一个Ag(I)离子与1个单齿硝酸根,1个双齿硝酸根和HL配体中的吡嗪N4原子配位,形成扭曲平面正方形配位构型。另外,相邻的Ag(I)离子通过桥联的硝酸根离子相互连接形成二维层状结构;此外,配合物1与DNA的相互作用强于配体。  相似文献   

17.
A novel Cu(II) complex [Cu2L2(NO3)2] with 2-hydroxy-1-naphthaldehyde-(4’hydroxy)phenylacetyl hydrazone (C19H14N2O2·H2O, HL) was synthesized. The structure of [Cu2L2(NO3)2] was characterized by X-ray single-crystal diffraction and can be described as a distorted rectangular pyramid with binuclear coordination. IR, UV–vis and EPR spectra are used to discuss the structure of Cu(II) complex in different conditions. Magnetic properties were determined by EPR spectra and magnetic susceptibility studies, showing magnetic exchange interaction and weak antiferromagnetic exchange between two Cu(II) ions. The apparent activation energy (Ea) of thermal decomposition of compounds indicated that the thermal stability of [Cu2L2(NO3)2] is better than HL. The CT-DNA binding behavior of compounds was determined by UV–vis absorption and viscosity measurements and the results confirmed an intercalative binding mode with CT-DNA. Kb obtained was 6.24(±0.12) × 106 M?1 and 3.09(±0.006) × 106 M?1 for [Cu2L2(NO3)2] and HL, respectively, revealing that the binding ability of [Cu2L2(NO3)2] with CT-DNA was stronger. The thermogenic curves of compounds interacting with CT-DNA were monitored by microcalorimetry, showing they were all endothermic reactions with reaction within 27–42 min; interaction enthalpies (ΔH) of [Cu2L2(NO3)2] and HL were 30.3 and 4.31 kJ mol?1. Binding studies with BSA were evaluated by fluorescence spectroscopy and the same relative interactions were found comparing with the above CT-DNA experiments.  相似文献   

18.
The multidentate Schiff-base ligand N′-(1-(pyrazin-2-yl)ethylidene)isonicotinohydrazide (HL) has been prepared. Reaction with zinc, copper, and silver nitrate afford three complexes, [Zn(HL′)2](NO3)2·3H2O (1), {[Cu2(L)2(NO3)(H2O)2]·NO3}n (2) and {[Ag2(L)2]·3H2O}n (3). These complexes have been characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. In 1, HL is a neutral tridentate ligand, whereas in 2 and 3, HL is a deprotonated tetradentate ligand. The hydrogen bonding interactions between NO3? and the host framework result in various supramolecular polymeric structures: a 2-D layer for 1 and 3-D network for 2 and 3. The antibacterial activities of these complexes have been investigated and the results indicate that 3 showed good antibacterial activities.  相似文献   

19.
Nickel(II) and cobalt(II) complexes with optically active diaminodioxime (H2L, the derivative of 3-carene) of the compositions [Ni(H2L)NO3]NO3 (I), Ni(H2L)Cl2 (II), [Ni(HL)]ClO4 · H2O (III), and Co(H2L)Cl2 (IV), were synthesized. According to X-ray diffraction data, the structures of the paramagnetic compound I and diamagnetic complex III are ionic. In the cation of I, the distorted NiN4O2 octahedron is formed by the N atoms of the tetradentate cyclic ligand (H2L molecule) and by the O atoms of NO3 –; anion functioning as bidentate cyclic ligands. In the cation of III, the NiN4 coordination unit is a distorted square formed upon coordination of the tetradentate cyclic ligand, HL–; anion. The data of magnetochemistry and UV-Vis, IR, and Raman spectroscopy suggest that paramagnetic complexes II and IV contain a distorted octahedral polyhedron MCl2N4 (M = Ni, Co).  相似文献   

20.
The synthetic investigation of the CuII/maleamate(−1) ion (HL)/N,N′,N′′-chelate general reaction system has allowed access to compounds [Cu2(HL)2(bppy)2](ClO4)2·H2O (1·H2O), [Cu(HL)(bppy)(ClO4)] (2) and [Cu(HL)(terpy)(H2O)](ClO4) (4) (bppy = 2,6-bis(pyrazol-1-yl)pyridine, terpy = 2,2′;6′,2′′-terpyridine). In the absence of externally added hydroxides, compound [Cu2(L′)2(bppy)2](ClO4)2 (3) was obtained from MeOH solutions; L′ is the monomethyl maleate(−1) ligand which is formed in situ via the CuII-assisted HL → L′ transformation. In the case of tptz-containing (tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine) reaction systems, the CuII-assisted hydrolysis of tptz to pyridine-2-carboxamide (L1) afforded complex [Cu(L1)2(NO3)2] (5). The crystal structures of 15 are stabilized by intermolecular hydrogen bonding and π–π stacking interactions. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号