首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An RF deflecting cavity used for bunch length measurement has been designed and fabricated at Tsinghua University for the Thomson Scattering X-Ray Source.The cavity is a 2856 MHz,π-mode,3-cell standing-wave cavity,to diagnose the 3.5 MeV beam produced by photocathode electron gun.With a larger power source,the same cavity will again be used to measure the accelerated beam with energy of 50 MeV before colliding with the laser pulse.The RF design using MAFIA for both the cavity shape and the power coupler is reviewed,followed by presenting the fabrication procedure and bench measurement results of two cavities.  相似文献   

2.
RF deflecting cavity can be used for bunch length measurement and is designed to diagnose the beam produced by the photocathode electron gun which was built at Tsinghua University for the Thomson scattering experiment.Detailed discussion and calculation for measuring the 3.5 MeV bunch and another with further acceleration to 50 MeV,which is under development,are presented.A standing-wave deflecting cavity working at 2856 MHz is designed and the power feeding system has been planned.  相似文献   

3.
A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radiofrequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.  相似文献   

4.
    
The length of electron beam from a photocathode RF gun is determined by a spectrometer, according to the relative energy spread induced by the bunch length during the acceleration in a linac. For a photocathode RF gun, different laser injected phase and beam charge are studied. The compression is changed for the different laser phases, as from 10° to 30°, and the bunch length is lengthened due to the strong longitudinal space charge force, caused by the increased charge.  相似文献   

5.
An RF deffecting cavity used for bunch length measurement has been designed and fabricated at Tsinghua University for the Thomson Scattering X-Ray Source. The cavity is a 2856 MHz, π-mode, 3-cell standing-wave cavity, to diagnose the 3.5 MeV beam produced by photocathode electron gun. With a larger power source, the same cavity will again be used to measure the accelerated beam with energy of 50 MeV before colliding with the laser pulse. The RF design using MAFIA for both the cavity shape and the power coupler is reviewed, followed by presenting the fabrication procedure and bench measurement results of two cavities.  相似文献   

6.
    
RF deflecting cavity can be used for bunch length measurement and is designed to diagnose the beam produced by the photocathode electron gun which was built at Tsinghua University for the Thomson scattering experiment. Detailed discussion and calculation for measuring the 3.5 MeV bunch and another with further acceleration to 50 MeV, which is under development, are presented. A standing-wave deflecting cavity working at 2856 MHz is designed and the power feeding system has been planned.  相似文献   

7.
The X-ray source based on Thomson scattering of ultrashort laser pulse with a relativistic electron beam is a means of generating a tunable, narrow bandwidth and ultrashort pulse of hard X-rays. Such a sub-picosecond hard X-ray source is proposed at Tsinghua University, and a preliminary experiment with a 16 MeV Backward Traveling electron linac and a 1.5 J, 6 ns Q-switched Nd:YAG laser is carried out first. A 6 ns pulse X-ray with a peak energy of 4.6 keV and an intensity of 1.7×104 per pulse is generated successfully in the experiment. The experimental setup, result and discussion are reported in this paper.  相似文献   

8.
Magnetic bunch compressor is one of the key technologies on the path to next generation accelerator driven facilities. In this paper we report the design principles and the first experimental research of the bunch compressor developed at Chinese Academy of Engineering Physics (CAEP). The length of the bunch after compressor is found to be about 0.7 ps (rms) and the peak current exceeds 500 A when operated in the optimized condition. The sensitivity of the bunch length on the phase of the acceleration field and magnetic field of the bunch compressor was also measured and analyzed.  相似文献   

9.
A simulation study of Tsinghua Thomson scattering X-ray source   总被引:1,自引:0,他引:1  
Thomson scattering X-ray sources are compact and a?ordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.  相似文献   

10.
    
We consider a scheme to generate a sub-picosecond electron bunch in the photocathode rf gun by im-proving the acceleration gradient in the gun, suitably tuning the bunch charge, the laser spot size and the acceleration phase, and reducing the growth of transverse emittance by laser shaping. A nondestructive technique is also reported to measure the electron bunch length, by measuring the high-frequency spectrum of wakefield radiation which is caused by the passage of a relativistic electron bunch through a channel surrounded by a dielectric.  相似文献   

11.
    
Magnetic bunch compressor is one of the key technologies on the path to next generation accelerator driven facilities. In this paper we report the design principles and the first experimental research of the bunch compressor developed at Chinese Academy of Engineering Physics (CAEP). The length of the bunch after compressor is found to be about 0.7 ps (rms) and the peak current exceeds 500 A when operated in the optimized condition. The sensitivity of the bunch length on the phase of the acceleration field and magnetic field of the bunch compressor was also measured and analyzed.  相似文献   

12.
    
RF deflectors can be used for bunch length measurement with high resolution. This paper describes a completed S-band traveling wave RF deflector and the bunch length measurement of the electron beam produced by the photocathode RF gun of the Shanghai DUV-FEL facility. This is the first time that such a transverse RF deflector has been developed and used to measure the bunch length of picosecond order in China. The deflector's VSWR is 1.06, the whole attenuation 0.5 dB, and the bandwidth 4.77 MHz for VSWR less than 1.1. With a laser pulse width of 8.5 ps, beam energy of 4.2 MeV, and bunch charge of 0.64 nC, the bunch lengths for different RF input power into the deflector were measured, and an averaged rms bunch length of 5.25 ps was obtained. A YAG crystal is used as a screen downstream of the deflector, with the calibrated value of 1 pix = 136 μm.  相似文献   

13.
Narrow-band THz coherent Cherenkov radiation can be driven by a subpicosecond electron bunch trav- eling along the axis of a hollow cylindrical dielectric-lined waveguide. We present a scheme of compact THz radiation source based on the photocathode rf gun. On the basis of our analytic result, the subpicosecond electron bunch with high charge (800 pC) can be generated directly in the photocathode rf gun. According to the analytical and simulated results, a narrow emission spectrum peaked at 0.24 THz with 2 megawatt (MW) peak power is expected to gain in the proposed scheme (the length of the facility is about 1.2 m).  相似文献   

14.
Energy spectra, angular distributions, and temporal profiles of the photons produced by an all-optical Thomson scat- tering X-ray source are explored through numerical simulations based on the parameters of the SILEX-I laser system (800 nm, 30 fs, 300 TW) and the previous wakefield acceleration experimental results. The simulation results show that X-ray pulses with a duration of 30 fs and an emission angle of 50 mrad can be produced from such a source. Using the optimized electron parameters, X-ray pulses with better directivity and narrower energy spectra can be obtained. Besides the electron parameters, the laser parameters such as the wavelength, pulse duration, and spot size also affect the X-ray yield, the angular distribution, and the maximum photon energy, except the X-ray pulse duration which is slightly changed for the case of ultrafast laser-electron interaction.  相似文献   

15.
杨振萍  李正红 《物理学报》2008,57(5):2627-2632
由于光阴极RF腔注入器中电子束的脉冲结构由激光控制的特点,根据其电子束脉冲结构的特点,利用微波腔的等效电路,给出了这种微波腔中微波场变化公式,和关于光阴极RF腔的最佳耦合计算公式,并以CAEP光阴极RF腔注入器为例进行理论分析,给出这些变化对电子束参数(如能散度)的影响.关键词:光阴极RF腔注入器光阴极注入器能散度  相似文献   

16.
         下载免费PDF全文
RF deflectors can be used for bunch length measurement with high resolution. This paper describes a completed S-band traveling wave RF deflector and the bunch length measurement of the electron beam produced by the photocathode RF gun of the Shanghai DUV-FEL facility. This is the first time that such a transverse RF deflector has been developed and used to measure the bunch length of picosecond order in China. The deflector's VSWR is 1.06, the whole attenuation 0.5 dB, and the bandwidth 4.77 MHz for VSWR less than 1.1. With a laser pulse width of 8.5 ps, beam energy of 4.2 MeV, and bunch charge of 0.64 nC, the bunch lengths for different RF input power into the deflector were measured, and an averaged rms bunch length of 5.25 ps was obtained. A YAG crystal is used as a screen downstream of the deflector, with the calibrated value of 1 pix = 136 μm.  相似文献   

17.
根据同步光与储存环中的束流信号具有相同的时间结构的原理,测量同步光脉冲的半高全宽值可以计算出束团的长度。根据合肥光源的特点和实际需要,选择快速光电接收器搭配高速高带宽示波器作为在线测量束团长度和纵向分布等的主要手段。对单束团模式下束团长度随流强和高频腔腔压的变化趋势进行了测量。测量结果表明:束团长度与腔压的0.3次方成反比,比理论值0.5小;而束团长度随流强的增长率为2.0 ps/mA。通过测量纵向量子寿命进行了能散随流强变化的间接测量,结果表明,束团的拉伸是能散变化和势阱效应共同作用的结果。  相似文献   

18.
Using the Hefei Light Source phase Ⅱ project (HLS- Ⅱ) as an example, a theoretical analysis of shortening the bunch lengths using a higher harmonic cavity (HHC) is given. The threshold voltage of an active HHC and the threshold tuning angle of a passive HHC are first analysed. The optimum tuning angle for the constant detuning scenario and the optimum harmonic voltage for the constant voltage scenario are presented. The calculated results show that the reduced bunch length is about half that of the nominal bunch. The bunch lengths vary from 11 mm at 0.1 A to 7 mm at 0.4 A for the constant detuning scenario, while the bunch lengths are around 7 mm over the beam current range for the constant voltage scenario. In addition, the synchrotron frequency spread is increased. It indicates that HHC may be used to reduce the bunch length and increase the Landau damping of synchrotron oscillations in a storage ring.  相似文献   

19.
Using the Hefei Light Source phaseⅡproject(HLS-Ⅱ)as an example,a theoretical analysis of shortening the bunch lengths using a higher harmonic cavity(HHC)is given.The threshold voltage of an active HHC and the threshold tuning angle of a passive HHC are first analysed.The optimum tuning angle for the constant detuning scenario and the optimum harmonic voltage for the constant voltage scenario are presented.The calculated results show that the reduced bunch length is about half that of the nominal bunch.The bunch lengths vary from 11 mm at 0.1 A to 7 mm at 0.4 A for the constant detuning scenario,while the bunch lengths are around 7 mm over the beam current range for the constant voltage scenario.In addition,the synchrotron frequency spread is increased.It indicates that HHC may be used to reduce the bunch length and increase the Landau damping of synchrotron oscillations in a storage ring.  相似文献   

20.
The Laser Undulator Compact X-ray source (LUCX) is a test bench for a compact high brightness X-ray generator, based on inverse Compton Scattering at KEK, which requires high intensity multi-bunch trains with low transverse emittance. A photocathode RF gun with emittance compensation solenoid is used as an electron source. Much endeavor has been made to increase the beam intensity in the multi-bunch trains. The cavity of the RF gun is tuned into an unbalanced field in order to reduce space charge effects, so that the field gradient on the cathode surface is relatively higher when the forward RF power into gun cavity is not high enough. A laser profile shaper is employed to convert the driving laser profile from Gaussian into uniform. In this research we seek to find the optimized operational conditions for the decrease of the transverse emittance. With the uniform driving laser and the unbalanced RF gun, the RMS transverse emittance of a 1 nC bunch has been improved effectively from 5.46 πmm·mrad to 3.66 πmm·mrad.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号