首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EPR studies are carried out on Cr3+ ions doped in d-gluconic acid monohydrate (C6H12O7·H2O) single crystals at 77 K. From the observed EPR spectra, the spin Hamiltonian parameters g, |D| and |E| are measured to be 1.9919, 349 (×10−4) cm−1 and 113 (×10−4) cm−1, respectively. The optical absorption of the crystal is also studied at room temperature. From the observed band positions, the cubic crystal field splitting parameter Dq (2052 cm−1) and the Racah interelectronic repulsion parameter B (653 cm−1) are evaluated. From the correlation of EPR and optical data the nature of bonding of Cr3+ ion with its ligands is discussed.  相似文献   

2.
A tentative vibrational assignment of the 2B12A1 absorption system of NO2 in solid Xe is reported. About 65 bands were analysed, yielding normal vibration energies of ν1 = 1230, ν2 = 450 and ν3 = 2040 cm−1. The electronic transition energy can be estimated to be T010 = 14160 cm−1 (14220 cm−1 for the gaseous phase). These observations are in good agreement with predictions made using ab initio calculations. Evidence for Renner—Teller interaction is documented by a systematic staggering of frequency intervals between successive bands in the ν2 progression of the state.  相似文献   

3.
A new organically templated fluoro-phosphite gallium(III)-doped chromium(III) with formula (C2H10N2)[Ga0.98Cr0.02(HPO3)F3] has been synthesized by using mild hydrothermal conditions under autogeneous pressure. The crystal structure has been solved from X-ray single-crystal data. The compound crystallizes in the P212121 orthorhombic space group, with the unit-cell parameters a=12.9417(7) Å, b=9.4027(6) Å, c=6.3502(4) Å and Z=4. The final R factors were R1=0.022 (all data) and wR2=0.050. The crystal structure consists of [Ga0.98Cr0.02(HPO3)F3]2− anionic chains extended along the c-axis, with the ethylenediammonium cations placed in the cavities of the structure delimited by three different chains. The IR and Raman spectra show the characteristic bands of the phosphite oxoanion. The diffuse reflectance spectroscopy allowed us to calculate the Dq and Racah parameters of the Cr(III) cations in octahedral environment. The values are Dq=1375 cm−1, B=780 cm−1 and C=3420 cm−1. The polycrystalline ESR spectra performed at X and Q-bands show the signals belonging to the diluted Cr(III) cation in this phase. From the fit of the X-band ESR spectrum at 4.2 K, the calculated values of the axial (D) and rhombic (E) distortion parameters are 0.075 and 0.042 cm−1, respectively, the components of the g-tensor being gx=1.98, gy=1.99 and gz=1.90.  相似文献   

4.
The distribution of d electrons over the cations in MoFe2O4, which is represented by the formal valence assignment, is shown to be complicated by the equilibrium reactionsFe2+B+Fe3+A+Mo3+Fe3+B+Fe2+A+Mo4+We have used thermal treatment to confirm that the Mo are primarily on octahedral sites; FeA[MoBFeB]O4. K-shell absorption and Mössbauer data at T = 423 K > Tc demonstrate that the iron has an average valence near 2.5+ with fast electron transfer (τh < 10−8 sec) on both octahedral and tetrahedral sites. Paramagnetic susceptibility data give a Curie constant CM = 7.95 ± 0.2 emu/mole and a Weiss constant θp = −445 K; magnetometer measurements confirm a compensation point near 160 K. Transport data give a surprisingly high electronic conductivity, but also give an activated mobility similar to that found in AlFe2O4 and CrFe2O4 where mixed Fe3+/2+ valences on both A and B sites have been demonstrated. However, a positive Seebeck coefficient and a preexponential factor one order of magnitude higher in MoFe2O4 point to involvement of a fraction of the Mo atoms in electronic transport, which would be consistent with the observation of a τh < 10−8 sec on the A sites of a spinel. An energy diagram consistent with these data and other information about the relative redox potentials of these ions in oxides are proposed for this system.  相似文献   

5.
The kinetics of the reaction of the CH3CHBr, CHBr2 or CDBr2 radicals, R, with HBr have been investigated in a temperature-controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3CHBr (or CHBr2 or CDBr2) radical was produced homogeneously in the reactor by a pulsed 248 nm exciplex laser photolysis of CH3CHBr2 (or CHBr3 or CDBr3). The decay of R was monitored as a function of HBr concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature. The reactions were studied separately from 253 to 344 K (CH3CHBr + HBr) and from 288 to 477 K (CHBr2 + HBr) and in these temperature ranges the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1σ + Student’s t values, units in cm3 molecule−1 s−1, no error limits for the third reaction): k(CH3CHBr + HBr) = (1.7 ± 1.2) × 10−13 exp[+ (5.1 ± 1.9) kJ mol−1/RT], k(CHBr2 + HBr) = (2.5 ± 1.2) × 10−13 exp[−(4.04 ± 1.14) kJ mol−1/RT] and k(CDBr2 + HBr) = 1.6 × 10−13 exp(−2.1 kJ mol−1/RT). The energy barriers of the reverse reactions were taken from the literature. The enthalpy of formation values of the CH3CHBr and CHBr2 radicals and an experimental entropy value at 298 K for the CH3CHBr radical were obtained using a second-law method. The result for the entropy value for the CH3CHBr radical is 305 ± 9 J K−1 mol−1. The results for the enthalpy of formation values at 298 K are (in kJ mol−1): 133.4 ± 3.4 (CH3CHBr) and 199.1 ± 2.7 (CHBr2), and for α-C–H bond dissociation energies of analogous compounds are (in kJ mol−1): 415.0 ± 2.7 (CH3CH2Br) and 412.6 ± 2.7 (CH2Br2), respectively.  相似文献   

6.
In an excitation range of 620–760 nm, resonance Raman spectra of aluminum dimers (Al2) in an argon matrix have been obtained for the first time. Temperature annealing experiments were performed to remove Raman lines attributed site effects caused by the Al2/Ar matrix. We observe a single fundamental at 293.3 (5) cm−1 along with a progression up to 1149 (1) cm−1. Taking successive differences of band centers we obtain spectroscopic constants for the ground state fundamental, ωe=297.5 (5) cm−1, the anharmonicity, ωexe=1.68 (8) cm−1. Our results are in close agreement with previous experimental results for Al2 which designate the ground state as a 3Πu state, and may be considered as confirmation of this assignment.  相似文献   

7.
Photoluminescence, absorption and excitation spectra of K2LiAlF6 single crystals doped with 1% of Cr3+ are presented. The near-infrared photoluminescence observed at room temperature, 77 and 4 K are attributed to the zero-phonon spin-allowed 4T2(4F)4A2(4F) transition of Cr3+ octahedrally coordinated by F ions. Lifetimes are obtained. The 4 K emission broad band was described in terms of normal modes of the octahedral complex [CrF6]3−. The Racah, crystal-field and Huang-Rhys parameters are calculated and the quantum efficiency and thermal quenching estimated and compared with Cr3+ properties in different environments.  相似文献   

8.
The gas-phase electronic spectrum of cyclic-B3 (D3h) radical has been remeasured in a supersonic molecular beam using a mass-selective resonant 2-color 2-photon technique, leading to a revision of previously reported spectroscopic constants. The species was prepared by ablation of a boron nitride rod in the presence of helium. Ab intio calculations on the geometries and vertical electronic excitation energies, as well as mass identification, indicate that the detected band, centered at 21848.77(2) cm−1, is the origin of the cyclic-11B3 system. A spectral fit yields the rotational constants as B″ = 1.2246(45) and C″ = 0.62131(72) cm−1 in the ground state, and B′ = 1.1914(44) and C′ = 0.61173(69) cm−1 in the excited 2 2E′ state.  相似文献   

9.
The basic copper arsenate mineral strashimirite Cu8(AsO4)4(OH)4·5H2O from two different localities has been studied by Raman spectroscopy and complemented by infrared spectroscopy. Two strashimirite mineral samples were obtained from the Czech (sample A) and Slovak (sample B) Republics. Two Raman bands for sample A are identified at 839 and 856 cm−1 and for sample B at 843 and 891 cm−1 are assigned to the ν1 (AsO43−) symmetric and the ν3 (AsO43−) antisymmetric stretching modes, respectively. The broad band for sample A centred upon 500 cm−1, resolved into component bands at 467, 497, 526 and 554 cm−1 and for sample B at 507 and 560 cm−1 include bands which are attributable to the ν4 (AsO43−) bending mode. In the Raman spectra, two bands (sample A) at 337 and 393 cm−1 and at 343 and 374 cm−1 for sample B are attributed to the ν2 (AsO43−) bending mode. The Raman spectrum of strashimirite sample A shows three resolved bands at 3450, 3488 and 3585 cm−1. The first two bands are attributed to water stretching vibrations whereas the band at 3585 cm−1 to OH stretching vibrations of the hydroxyl units. Two bands (3497 and 3444 cm−1) are observed in the Raman spectrum of B. A comparison is made of the Raman spectrum of strashimirite with the Raman spectra of other selected basic copper arsenates including olivenite, cornwallite, cornubite and clinoclase.  相似文献   

10.
The surface state of optically pure polydisperse TiO2 (anatase and rutile) was determined by infra-red (IR) spectroscopy analysis in the temperature range of 100–453 K. Anatase A300 spectrum, contrary to rutile R300 one, has a broad three-component absorption band with peaks at 1048, 1137 and 1222 cm−1 in the spectral range of δ(Ti–O–H) deformation vibrations. For rutile R300 we observed a very weak band at 1047 cm−1, and for the thermal treated rutile R900 these bands were not appeared at all. The analysis of temperature dependencies for the mentioned absorption bands revealed the spectral shift of 1222 cm−1 band towards the high frequencies, when the temperature increased, but the spectral parameters of 1137 and 1048 cm−1 bands remained the same. The temperature of 1222 cm−1 band maximum shift was 373–393 K and correlated with DSC data. Obtained results allowed to assign 1222 cm−1 band to the deformation vibrations of OH-groups, bounded to the surface adsorbed water molecules by weak hydrogen bonds (5 kcal/mol). During the temperature growth these molecules desorbed, which also resulted in the intensity decreasing of stretching OH-groups vibration IR-bands at 3420 cm−1. The destruction and desorption of surface water complexes led to Ti–O–H bond strengthening. IR bands at 1137 and 1048 cm−1 were attributed to the stronger bounded adsorbed water molecules, which are also characterized with stretching OH-groups vibration bands at 3200 cm−1. These surface structure were additionally stabilized by hydrogen bonds with the neighbouring TiO2 lattice anions and other OH-groups, and desorbed at higher temperatures.  相似文献   

11.
Combining a temperature variable 22-pole ion trap with a cold effusive beam of neutrals, rate coefficients k(T) have been measured for reactions of CO2+ ions with H, H2 and deuterated analogues. The neutral beam which is cooled in an accommodator to TACC, penetrates the trapped ion cloud with a well-characterized velocity distribution. The temperature of the ions, T22PT, has been set to values between 15 and 300 K. Thermalization is accelerated by using helium buffer gas. For reference, some experiments have been performed with thermal target gas. For this purpose hydrogen is leaked directly into the box surrounding the trap. While collisions of CO2+ with H2 lead exclusively to the protonated product HCO2+, collisions with H atoms form mainly HCO+. The electron transfer channel H+ + CO2 could not be detected (<20%). Equivalent studies have been performed for deuterium. The rate coefficients for reactions with atoms are rather small. Within our relative errors of less than 15%, they do not depend on the temperature of the CO2+ ions nor on the velocity of the atoms (k(T) lays between 4.5 and 4.7 × 10−10 cm3 s−1 with H as target, and 2.2 × 10−10 cm3 s−1 with D). For collisions with molecules, the reactivity increases significantly with falling temperature, reaching the Langevin values at 15 K. These results are reported as k = α (T/300 K)β with α = 9.5 × 10−10 cm3 s−1 and β = −0.15 for H2 and α = 4.9 × 10−10 cm3 s−1 and β = −0.30 for D2.  相似文献   

12.
The heat capacity and the enthalpy increments of strontium niobate Sr2Nb2O7 and calcium niobate Ca2Nb2O7 were measured by the relaxation time method (2–300 K), DSC (260–360 K) and drop calorimetry (720–1370 K). Temperature dependencies of the molar heat capacity in the form Cpm = 248.0 + 0.04350T − 3.948 × 106/T2 J K−1 mol−1 for Sr2Nb2O7 and Cpm = 257.2 + 0.03621T − 4.434 × 106/T2 J K−1 mol−1 for Ca2Nb2O7 were derived by the least-square method from the experimental data. The molar entropies at 298.15 K, Sm°(298.15 K) = 238.5 ± 1.3 J K−1 mol−1 for Sr2Nb2O7 and Sm°(298.15 K) = 212.4 ± 1.2 J K−1 mol−1 for Ca2Nb2O7, were evaluated from the low-temperature heat capacity measurements.  相似文献   

13.
It is established by ESR that the adsorption of an NO + O2 mixture at 20°C on oxidized CeO2 (O2, T = 400–700°C) produces radical anions O 2 located both on isolated Ce4+ cations (O 2 (1)) and in associated anionic vacancies (O 2 (2)). These species differ in thermal stability. For example, O 2 (2) decomposes at 20°C, while O 2 (1) decomposes at 50°C. Only O 2 (1) species are observed at −196°C in ZrO2-supported CeO2. In the case of NO + O2 adsorption at 20°C, O 2 is stabilized on Zr4+ cations and decomposes at 270°C. Increasing the cerium oxide content of the ZrO2 surface from 0.5 to 10% only partially inhibits the formation of O 2 -Zr4+. The Zr4+ cation is shown to possess a higher Lewis acidity than the Ce4+ cation, and the ionic bond in O 2 -Zr4+ complexes is stronger than that in O 2 -Ce4+ complexes. ESR, temperature-programmed desorption, and IR spectroscopic data for various adsorption complexes of NO on CeO2 suggest that, in the key step of O 2 formation, free electrons appear on the surface owing to the conversion of adsorbed NO molecules into nitrito chelates on coordinately unsaturated ion pairs Ce4+-O 2 .__________Translated from Kinetika i Kataliz, Vol. 46, No. 3, 2005, pp. 414–422.Original Russian Text Copyright © 2005 by Il’ichev, Shibanova, Ukharskii, Kuli-zade, Korchak.  相似文献   

14.
The oxygen ions of the β-VOPO4 catalyst were exchanged with an tracer by a reduction–oxidation method and by a catalytic oxidation of but-1-ene using 2. The bands at 992 and 900 cm−1 were more shifted to lower frequencies than those at 1076 and 1002 cm−1. Applying the correlation between the Raman bands and stretching vibrations in the literature, the exchanged oxygen species were estimated. The results suggest that the P–O–V vacancies corresponding to 992 and 900 cm−1 were responsible for reoxidation and the V=O oxygen corresponding to the 1002 cm−1 band of β-VOPO4 was not. The (VO)2P2O7 was oxidized to β-VOPO4 by O2 above 823 K. The insertion position of oxygen was determined at the bands at 992 and 900 cm−1 of β-VOPO4 using 2, which is the same as the exchanged position.  相似文献   

15.
The broad absorption band in Cs2 having peak intensity near 4800 Å is analyzed through computational simulation of the experimental spectrum using the classical method. The absorption, which terminates in a weak satellite at 5223 Å, can be interpreted in terms of a single transition from the ground state (Re = 4.65 Å, ωe = 42 cm−1) to an upper state having Te = 20 470 cm−1, ωe = 33 cm−1 and Re = 5.28 Å. The absolute absorption strength is roughly consistent with published lifetime data, but its reliability is limited by thermodynamic uncertainties stemming from the remaining uncertainty in the Cs2 ground state dissociation enegy. The paper includes a summary of diatomic radiation relations pertinent to the analysis of low-resolution spectra, and a brief discussion of the reduced potential method applied to the alkali dimer ground states.  相似文献   

16.
We have successfully synthesized a high-purity polycrystalline sample of tetragonal Li7La3Zr2O12. Single crystals have been also grown by a flux method. The single-crystal X-ray diffraction analysis verifies that tetragonal Li7La3Zr2O12 has the garnet-related type structure with a space group of I41/acd (no. 142). The lattice constants are a=13.134(4) Å and c=12.663(8) Å. The garnet-type framework structure is composed of two types of dodecahedral LaO8 and octahedral ZrO6. Li atoms occupy three crystallographic sites in the interstices of this framework structure, where Li(1), Li(2), and Li(3) atoms are located at the tetrahedral 8a site and the distorted octahedral 16f and 32g sites, respectively. The structure is also investigated by the Rietveld method with X-ray and neutron powder diffraction data. These diffraction patterns are identified as the tetragonal Li7La3Zr2O12 structure determined from the single-crystal data. The present tetragonal Li7La3Zr2O12 sample exhibits a bulk Li-ion conductivity of σb=1.63×10−6 S cm−1 and grain-boundary Li-ion conductivity of σgb=5.59×10−7 S cm−1 at 300 K. The activation energy is estimated to be Ea=0.54 eV in the temperature range of 300–560 K.  相似文献   

17.
The crystal structure of Sr2ErRuO6 has been refined from neutron powder diffraction data collected at room temperature; space group P21/n, A = 5.7626(2), B = 5.7681(2), C = 8.1489(2) Å, β = 90.19(1)°. The structure is that of a distorted perovskite with a 1:1 ordered arrangement of Ru5+ and Er3+ over the 6-coordinate sites. Data collected at 4.2 K show the presence of long range antiferromagnetic order involving both Ru5+ and Er3+. The temperature dependence of the sublattice magnetizations is described. The crystal structure of Ca2NdRuO6 is also that of a distored perovskite (P21/n, A = 5.5564(1), B = 5.8296(1), C = 8.0085(1) β = 90.19(1)°. The β = 90.07(1)°) with a random distribution of Ca2+ and Nd3+ on the A site and a 1:1 ordered arrangement of Ca2+ and Ru5+ on the 6-coordinate B sites. The Ru5+ sublattice is antiferromagnetic at 4.2 K but there is no evidence for magnetic ordering of the Nd3+ ions. Ca2HoRuO6 is also a distorted perovskite (P21/n, A = 5.4991(1), B = 5.7725(1), C = 7.9381(2), β = 90.18(1)° at 4.2 K) with a cation distribution best represented as Ca1.46Ho0.54[Ca0.54Ho0.46Ru]O6. There is no ordering among the Ca3+ or Ho3+ ions on either the A or the B sites, but the Ca/Ho ions form a 1:1 ordered arrangement with Ru5+ on the B sites. At 4.2 K the Ru5+ ions adopt a Type I antiferromagnetic arrangement but there is no evidence of long range magnetic ordering among the Ho3+ ions.  相似文献   

18.
The fluorescence excitation spectrum and the single vibronic level fluorescence spectra from the vibronic levels in the à 1B2 state of tropolone(-OD) have been measured in a supersonic free jet. Some low frequency fundamentals in the 1A1 and à 1B2 states have been determined. A tunneling doublet separation has been measured to be 11 cm−1 for the in-plane ring deformation ν′14(a1) mode, which is significantly larger than 2 cm−1 for the vibrationless state.  相似文献   

19.
Electrolysis of suspensions of Co3O4 particles in Pb2+-containing electrolytes has been used for depositing PbO2 + Co3O4 composite layers on Ni rotating dise anodes. A sufficiently high angular speed of the electrode is necessary to obtain layers of homogeneous thickness and Co3O4 concentration. The volume fraction of Co3O4 particles in the deposit α reaches a limiting value of ca. 0.1 when the volume fraction of particles in suspension C exceeds 0.008. The current density j has little effect on α as long as it is in the range 1 to 20 mA cm−2; if j increases further, α decreases.PbO2 + Co3O4 composite layers have been studied as electrode materials for the oxygen evolution reaction (mainly in NaOH solution). The overpotential and Tafel slope decrease upon increasing α. At a fixed potential, j is roughly proportional to OH concentration. The PbO2 + Co3O4 electrode performance is fairly stable at 25°C but declines with time at higher temperature.  相似文献   

20.
A new layered tin(II) phosphate [Sn2(PO4)2]2−[C2N2H10]2+·H2O was synthesized by hydrothermal technique. It crystallizes in monoclinic space groupP21/c(No. 14) with lattice parametersa=9.4112(1) Å;b=8.5998(1) Å;c=15.9921(2) Å;β=100.009(1)°;V=1274.61(2);Z=4;R=2.06%;Rw=2.17%. The structure consists of inorganic layers, comprising a network of strictly alternating SnO3and PO4moieties and held together by strong hydrogen bonding between the layers. Protonated ethylenediamine and water molecules are trapped between the layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号