首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Very sensitive, low cost and reliable NADH and H2O2 sensors were realised and used for development of enzyme based biosensors. The active surface of the electrodes was modified with a nanocomposite obtained by modification of SWNT with a proper mediator: Meldola Blue (for NADH) and Prussian Blue (for H2O2). Low applied potential of − 50 mV vs. Ag/AgCl reference electrode proved the synergistic effect of nanocomposite materials towards NADH and H2O2 detection. Biosensors for malic acid and alkylphenols have been developed, using mediator-functionalised-SWNT-based electrodes and two different classes of enzymes: NAD+-dependent dehydrogenases and peroxidases. Immobilization of the enzymes was realised using a series of different procedures — adsorption, Nafion membrane, sol–gel and glutaraldehyde, in order to find the best configuration for a good operational stability. A higher sensitivity comparing with other reported biosensors of about 12.41 mA/M·cm2 was obtained for l-malic acid biosensor with enzyme immobilised in Nafion membrane. Phenol, 4-t-octylphenol and 4-n-nonylphenol were used as standard compounds for HRP based biosensor. Fast biosensor response and comparable detection limit with HPLC methods were achieved.  相似文献   

2.
Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds was constructed. Enzymes were immobilized in titania gel matrix. The obtained biosensor was successfully used for determination of 2,6-dimethoxyphenol, 4-tertbutylcatechol, 4-methylcatechol, 3-chlorophenol and catechol. The highest sensitivity and the widest linear range were noticed for catechol, 234 mA L mol− 1 and 2.0 × 10− 7–3.2 × 10− 5 mol/L, respectively. Detection limit for catechol, at signal-to-noise ratio of 3 was 1.3 × 10− 7 mol/L.  相似文献   

3.
Pd (IV)-doped CuO oxide composite nanofibers (PCNFs) have been successfully fabricated via electrospinning and then employed to construct an amperometric non-enzymatic glucose sensor. The PCNFs based glucose sensors display distinctly enhanced electrocatalytic activity towards the oxidation of glucose, showing significantly lower overvoltage (0.32 V) and ultrafast (1 s) and ultrasensitive current (1061.4 μA mM−1 cm−2) response with a lower detection limit of 1.9 × 10−8 M (S/N = 3). Additionally, excellent selectivity, reproducibility and stability have also been obtained. These results indicate that PCNFs are promising candidates for amperometric non-enzymatic glucose detection.  相似文献   

4.
This work reports the evaluation of the combined use of Pd and HF as chemical modifiers for the direct determination of total chromium in waters derived from petroleum exploration employing electrothermal atomic absorption spectrometry (ET AAS). Such waters, usually called as produced waters, have complex composition presenting a number of organic and inorganic substances. When obtained from offshore operations they also present high salinity. In order establish conditions for chromium measurement pyrolysis and atomization curves were built up in different media and employing Pd and HF as chemical modifiers. Also, a detailed study about calibration strategy was performed. At best conditions, pyrolysis and atomization temperatures were 1200 °C and 2600 °C, respectively, and 10 μL of a 500 mg L− 1 Pd solution was added together with 10 μL of a 50% (v/v) HF solution on 20 μL of sample. Obtained results indicate that, in this kind of sample, chromium can be determined by standard addition method or employing external calibration with standard solutions prepared in 0.8 mol L− 1 NaCl medium. In order to evaluate the accuracy of the procedure, a recovery test was performed with seven spiked samples of produced waters. The detection limit, quantification limit and the relative standard deviation in 0.8 mol L− 1 NaCl were also calculated and the values found were 0.45 μg L− 1, 1.5 μg L− 1 and 6.0% (at 2.5 μg L− 1 level), respectively.  相似文献   

5.
Detection of multiple cancer biomarker proteins in human serum and tissue at point-of-care is a viable approach for early cancer detection, but presents a major challenge to bioanalytical device development. This article reviews recent approaches developed in our laboratories combining nanoparticle decorated electrodes and multilabeled secondary antibody labeled particles to achieve high sensitivity for the detection of cancer biomarker proteins. Two nanomaterial-based sensor platforms were used: (a) upright single wall carbon nanotube forests and (b) layers of densely packed 5 nm gold nanoparticles. Both platforms feature pendant carboxylate groups for easy attachment of enzymes or antibodies by amidization. In quality performance tests, the biocatalytic responses for determination of hydrogen peroxide of AuNP layers with attached horseradish peroxidase (HRP) on electrodes gave somewhat better detection limit and sensitivity than single wall carbon nanotube (SWNT) forest platforms with HRP attached. Evaluation of these sensors as platforms for sandwich immunoassays for cancer biomarker prostate specific antigen (PSA) in serum showed that both approaches gave accurate results for human serum samples from cancer patients. The best detection limit (0.5 pg mL− 1) and sensitivity were obtained by combining the AuNP immunosensors with binding of 1 μm diameter magnetic particles decorated with secondary antibodies and 7500 HRP labels.  相似文献   

6.
A sensitive and selective batch adsorption method is proposed for the preconcentration and determination of linuron. Linuron was preconcentrated on octadecyl silanized (ODS) magnetite as an adsorbent and then determined by high performance liquid chromatography (HPLC). Several parameters on the recovery of the analyte were investigated. The experimental results showed that it was possible to obtain sufficient preconcentration efficiency when the solution pH was 6 using 100 mL of sample solution containing 1.0 μg of linuron and 3 mL of ethanol as a desorption solution. Recovery of linuron was 50.7 ± 1.9% with a relative standard deviation for five determinations of 3.0% under optimum conditions. The calibration curve of linuron was linear up to 200 ng mL− 1 with a correlation coefficient of 0.998 and the detection limit (3S/N) was 1.0 ng mL− 1. The capacity of the adsorbent was also examined and found to be 0.15 mg g− 1 for linuron. ODS-magnetite is suitable for repeated use without decreasing recovery at least 4 adsorption–desorption cycles. The proposed method was successfully applied to the determination of linuron in river water with high precision and accuracy.  相似文献   

7.
Novel enzyme electrodes based on synthetic hydrophilic latex matrices are described for the detection of glucose. Glucose oxidase was immobilised through micro-encapsulation, by the simple adsorption of enzyme–latex suspensions on the surface of a platinum electrode. Two latex films functionalised by a hydroxy or a gluconamide group were used. The response of these biosensors to glucose additions was measured by potentiostating the modified electrodes at 0.6 V/SCE in order to oxidise the hydrogen peroxide generated by the enzymatic oxidation of glucose in the presence of dioxygen. The response of such electrodes was evaluated as a function of film thickness and temperature. The sensitivity for a two-layer latex-based biosensor was found to be 38.78 mA M−1 cm−2 with a response time of 3–5 s. Moreover, a marked improvement of the thermal stability of the biosensor was observed. Only at temperatures higher than 65°C the enzyme started to be denatured and being inactive.  相似文献   

8.
A new electroanalytical methodology was developed for the quantification of the phytohormone indole-3-acetic acid (IAA), using a graphite–polyurethane composite electrode (GPU) and the square wave voltammetry (SWV), in 0.1 mol L− 1 phosphoric acid solution (pH 1.6). Analytical curves were constructed under optimized conditions (f = 100 s− 1, a = 50 mV, Ei = 5 mV) and the reached detection and quantification limits were 26 μg L− 1 and 0.2 mg L− 1, respectively. The developed methodology is simple and accurate for the routine determination of IAA. In order to verify the application of the electroanalytical methodology in fortified soil samples without previous treatment, an IAA assay was performed without serious interferences of the soil constituents.  相似文献   

9.
A new approach for decreasing the detection limit for a copper(II) ion-selective electrode (ISE) is presented. The ISE is designed using salicylidine-functionalized polysiloxane in carbon paste. This work describes the attempts to develop the electrode and measurements of its characteristics. The new type of renewable three-dimensional chemically modified electrode could be used in a pH range of 2.3–5.4, and its detection limit is 2.7 × 10−8 mol L−1 (1.2 μg L−1). This sensor exhibits a good Nernstian slope of 29.4 ± 0.5 mV/decade in a wide linear concentration range of 2.3 × 10−7 to 1.0 × 10−3 mol L−1 of Cu(II). It has a short response time (8 s) and noticeably high selectivity over other Cu(II) selective electrodes. Finally, it was satisfactorily used as an indicator electrode in complexometric titration with EDTA and determination of copper(II) in miscellaneous samples such as urine and various water samples.  相似文献   

10.
Gold nanoelectrode ensembles were produced by electrodeposition using multiwalled carbon nanotubes (MWNTs) as template. A new third generation amperometric biosensor for hydrogen peroxide was developed based on adsorption of horseradish peroxidase (HRP) at the glassy carbon (GC) electrode modified with Au nanoelectrode ensembles/multiwalled carbon nanotubes/chitosan film. The resulting HRP biosensor offered an excellent detection for hydrogen peroxide at −0.11 V with a linear response range of 2.08 × 10−7 to 7.6 × 10−3 M with a correlation coefficient of 0.998, and response time <5 s. The detection limit was 1.02 × 10−7 M at 3σ. The biosensor displays rapid response, expanded linear response range, and excellent repeatability. The simple and fast fabrication of the sensor makes it superior to other techniques.  相似文献   

11.
The characteristics, performance, and application of an electrode, namely, Pt|Hg|Hg2(IBP)2|Graphite, where IBP stands for ibuprofenate ion, are described. This electrode responds to IBP with sensitivity of (58.6 ± 0.9) mV decade 1 over the range 5.0 × 10 5–1.0 × 10 1 mol L 1 at pH 6.0–9.0 and a detection limit of 3.8 × 10 5 mol L 1. The electrode is easily constructed at a relatively low cost with fast response time (within 15–30 s) and can be used for a period of 5 months without any considerable divergence in potentials. The proposed sensor displayed good selectivity for ibuprofen in the presence of several substances, especially concerning carboxylate and inorganic anions. It was used for the direct assay of ibuprofen in commercial tablets by means of the standard additions method. The analytical results obtained by using this electrode are in good agreement with those given by the United States Pharmacopeia procedure.  相似文献   

12.
Vapor generation and atomization conditions in a heated quartz tube to detect Ag, Cd, Co, Cu, Ni and Zn using High Resolution Continuum Source AAS (HRCSAAS), were optimized. Vapors were generated after mixing acidified solutions containing 8-hydroxiquinoline (oxine) with sodium tetrahydroborate. Afterwards, they were swept to the heated quartz cell by an argon flow.Reaction loop size and temperature of the quartz cell were optimized for each element. A temperature of 960 °C was selected as a compromise value to detect most of the metals. Afterwards, a Plackett–Burmann design was proposed to select which parameters were most important. Type of acid and its concentration were the most statistical significant variables. Optimum conditions for sequential detection of Cd, Cu, Ni and Zn were: 1 mg L 1 Co as catalyst, 250 mg L 1 oxine, 0.6 M nitric acid, 1.75% (w/w) sodium tetrahydroborate (prepared in 0.4 (w/v)% NaOH), a reaction loop of 250 µL, and a 25 L h 1 carrier Ar flow. Ag and Co were each detected in their own optimized conditions. Analytical performance of the system was evaluated in connection with a selected pixel number, and spectral correction was used to eliminate NO absorption bands interference in Zn detection. Detection limits were in the range of 1.5–18 μg L 1 for Ag, Cu, Cd and Zn, whereas sensitivity was worst for Co (169 μg L 1) and Ni (586 μg L 1). Atomization in a quartz cell of Co and Ni volatile species, generated by an addition of sodium tetrahydroborate to an acidified solution of the analytes, was reported for the first time in this paper. Precision expressed as RSD(%) had values lower than 10% except for Ni.  相似文献   

13.
Direct electrochemistry of glucose oxidase (GOx) has been achieved by its direct immobilization on carbon ionic liquid electrode (CILE) with a conductive hydrophobic ionic liquid, 1-butyl pyridinium hexafluophosphate ([BuPy][PF6]) as binder for the first time. A pair of reversible peaks is exhibited on GOx/CILE by cyclic voltammetry. The peak-to-peak potential separation (ΔEP) of immobilized GOx is 0.056 V in 0.067 M phosphate buffer solution (pH 6.98) with scan rate of 0.1 V/s. The average surface coverage and the apparent Michaelis–Menten constant are 6.69 × 10−11 mol·cm−2 and 2.47 μM. GOx/CILE shows excellent electrocatalytic activity towards glucose determination in the range of 0.1–800 μM with detection limit of 0.03 μM (S/N = 3). The biosensor has been successfully applied to the determination of glucose in human plasma with the average recoveries between 95.0% and 102.5% for three times determination. The direct electrochemistry of GOx on CILE is achieved without the help of any supporting film or any electron mediator. GOx/CILE is inexpensive, stable, repeatable and easy to be fabricated.  相似文献   

14.
The voltammetric behavior of 4-methylbenzelidene camphor (MBC) was studied by square wave voltammetry (SWV) using mercury electrode. The experimental condition that provided the highest peak current with the best reduction signal definition of MBC was found in Britton-Robinson buffer and cationic surfactants, cetyltrimethylammoniun bromide (CTABr). A single peak of MBC reduction was observed at − 1.21 V versus Ag/AgCl. The developed methodology was applied for determination of MBC in commercial sunscreen SPF 15, 20 and 30 and for the simultaneous determination when other protection agents were associated, such as benzophenone-3 (BENZO) and octyl methoxycinammate (OMC). Both methodologies had shown good determination values for the analyzed samples. The calculated detection limit was 2.99 × 10− 9 mol L− 1 and the quantification limit was 9.98 × 10− 9 mol L− 1.  相似文献   

15.
In this work, headspace solid-phase micro-extraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS) method for analysis of butyltin compounds in sediment samples was upgraded by the introduction of tandem mass spectrometry (MS/MS). Optimization and validation of this method based on an one step procedure, tetraethylborate in situ ethylation with simultaneous extraction by headspace SPME, combined with tandem mass spectrometry is described. A simple leaching/extraction step of mono-(M), di-(D) and tri-(T) butyltin (BT) compounds from the sediment is required as sample pre-treatment. The combination of the two techniques headspace SPME and MS/MS, led to very little matrix interference which permitted to attain limits of detection three or more orders of magnitude lower than those attained in previous methods: 0.3 pg g− 1 for MBT, 1 pg g− 1 for DBT and 0.4 pg g− 1 for TBT. Linear response range was from 0.02–1260 ng g− 1 for MBT, 0.07–1568 ng g− 1 for DBT and 0.04–2146 ng g− 1 for TBT and RSD < 15% was also obtained. The method was efficiently applied to a real sample sediment from Sado River estuary in Portugal, revealing the existence of BTs pollution, as the TBT level of 189 ± 15 ng g− 1 was much higher than the maximum established as provisional ecotoxicological assessment criteria.  相似文献   

16.
A new conducting composite flexible material prepared from cellulose acetate (CA) polymer and graphite has been developed and used for the fabrication of electrodes, which were then characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Scanning electron microscopy (SEM) was used to provide information concerning the morphology of the composite electrode surface. The potential window, background currents and capacitance were evaluated by cyclic voltammetry in the pH range from 4.6 to 8.2. The voltammetry of model electroactive species demonstrates a close to reversible electrochemical behaviour, under linear diffusion control. The electroactive area of the composite electrodes increases after appropriate electrode polishing and electrochemical pre-treatment. The electrodes were used as substrate for the electropolymerisation of the phenazine dye neutral red, for future use as redox mediator in electrochemical biosensors. The composite electrodes were also successfully used for the amperometric detection of ascorbate at 0.0 V vs. SCE, and applied to the measurement of ascorbate in Vitamin C tablets; the sensor exhibits high sensitivity and a low detection limit of 7.7 μM. Perspectives for use as a versatile, mechanically flexible and robust composite electrode of easily adaptable dimensions are indicated.  相似文献   

17.
Occurrence of ochratoxin A in Turkish wines   总被引:1,自引:0,他引:1  
I. Var  B. Kabak   《Microchemical Journal》2007,86(2):241-247
A total of 95 wine samples including 34 white, 10 rosé and 51 red wines originating from four different Turkish areas were analysed for ochratoxin A (OTA). An analytical method based on immunoaffinity column (IAC) for clean-up and high performance liquid chromatography with fluorescence detection (HPLC-FD) was used to determine OTA in wines. The limit of detection (LOD) was estimated as 0.006 ng ml− 1 for white wine and 0.010 ng ml− 1 for rosé and red wines. The limit of quantification (LOQ) was estimated as 0.020 ng ml− 1 in white wine and 0.030 ng ml− 1 in rosé and red wines. Recovery experiments were carried out with spiked samples in the range 0.1–1 ng ml− 1 of OTA. The average OTA recoveries from spiked white wine samples varied from 79.43% to 85.07%; while the mean recoveries for rosé and red wine samples were in the range of 77.48–83.96% and 76.61–83.55%, respectively. OTA was detected in 82 (86%) wine samples at levels of < 0.006–0.815 ng ml− 1, which were below the maximum allowable limit established by the European Community. The mean OTA concentration in red wines was slightly higher than in white and rosé wines. Furthermore, our data indicate that the geographic region of origin has strong influence on OTA level for white, rosé and red wines: wines originating from Thrace (n = 44, mean = 0.158 ng ml− 1) and Aegean (n = 28, mean = 0.060 ng ml− 1) regions of Turkey were more contaminated with OTA compared with wines originating from central (n = 15, mean = 0.027 ng ml−1) and east Anatolia (n = 8, mean = 0.027 ng ml− 1) areas. This study showed that the occurrence of OTA in Turkish wines is high, but at levels that probably leads to a non-significant human exposure to OTA by consumption of wines.  相似文献   

18.
In-capillary derivatization and field-amplified sample injection (FASI) coupled to capillary zone electrophoresis (CZE) was evaluated for the analysis of metals (Co(II), Cu(II), Ni(II), and Fe(II)) using 2-(5-Nitro-2-Pyridylazo)-5-(N-Propyl-N-Sulfopropylamino)Phenol (Nitro-PAPS) as the derivatizing agent. For FASI, the optimum conditions were water as sample solvent, 1 s hydrodynamic injection (0.1 psi) of a water plug, 5 s of electrokinetic introduction (10 kV) of the sample. The in-capillary derivatization was successfully achieved with zone-passing strategy in order tandem injection of Nitro-PAPS reagent (0.5 psi, 7 s), a small water plug (0.1 psi, 1 s), and metal ion introduction (10 kV, 5 s). The solution of 45 mmol L− 1 borate pH 9.7 and 1.0 × 10− 5 mol L− 1 Nitro-PAPS containing 20% acetonitrile was used as the running buffer. The limit of detection obtained by the proposed method was lower than those from pre-capillary derivatization about 3–28 times. The recovery of the method was comparable to pre-capillary derivatization method. In-capillary derivatization-FASI-CZE was applied to analysis of metals in wine samples. The results were compared with those obtained by CZE with pre-capillary derivatization method and atomic absorption spectrometry (AAS).  相似文献   

19.
Some organosulphur ligands have been found to inhibit the mercury(II) catalyzed substitution of cyanide in hexacyanoferrate(II) by N-methylpyrazinium ion (Mpz+). The inhibitory effect is due to the binding tendency of catalyst Hg2+ with these inhibitors. This effect has been used as a basis to develop a kinetic method for the determination of trace amounts of two organosulphur ligands viz. cysteine and MNDT. The reaction was followed spectrophotometrically at 655 nm by measuring the decrease in absorbance of the product [Fe(CN)5Mpz]2−. The influence of the reaction variables has also been studied. A general mechanistic scheme of the indicator reaction system including the role of inhibitor has been proposed and applied to determine the organosulphur ligands. Under the selected experimental conditions cysteine and MNDT have been determined in the range of 2–20 × 10− 7 M and 5 × 10− 8 M to 12 × 10− 7 M respectively in various aqueous samples. The analytical concentration range depends upon the amount of Hg2+ present in the indicator reaction and also on the stability of the Hg2+-inhibitor complex in question. Under specified conditions, the detection limit for cysteine and MNDT are 2 × 10− 7 M and 5 × 10− 8 M respectively. The influences of possible interference by major amino acids, on the determination of cysteine and their limits have been investigated.  相似文献   

20.
We report on the utilization of gold nanorods to create a highly responsive glucose biosensor. The feasibility of an amperometric glucose biosensor based on immobilization of glucose oxidase (GOx) in gold nanorod is investigated. GOx is simply mixed with gold nanorods and cross-linked with a cellulose acetate (CA) medium by glutaraldehyde. The adsorption of GOx on the gold nanorods is confirmed by X-ray photoelectron spectroscopy (XPS) measurements. Circular dichroism (CD) and UV-spectrum results show that the activity of GOx was preserved after conjugating with gold nanorods. The current response of modified electrode is 10 times higher than that of without gold nanorods. Under optimal conditions, the biosensor shows high sensitivity (8.4 μA cm−2 mM−1), low detection limit (2 × 10−5 M), good storage stability and high affinity to glucose (). A linear calibration plot is obtained in the wide concentration range from 3 × 10−5 to 2.2 × 10−3 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号