首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain physicochemical characteristics of particles of the cholesteric liquid-crystal dispersions of complexes of double-stranded nucleic acids with rare earth elements have been determined. It is shown for the first time that the binding of the rare earth cations to linear nucleic acid molecules ordered in the structure of particles of the cholesteric liquid crystal dispersions is accompanied not only by amplification of the abnormal band in the circular dichroism spectrum, but also by the disappearance of the characteristic maximum on the X-ray scattering curves for small angles. The (cholesteric 1-cholesteric 2) transition induced by rare earth cations is an example of the operation of a microscopic machine consisting of spatially ordered nucleic acid molecules. Particles of the cholesteric liquid crystal dispersions of nucleic acid complexes with rare earth elements hold the abnormal optical properties for a long time.  相似文献   

2.
3.
We propose a version of the theory describing the circular dichroism spectra of cholesteric liquidcrystal dispersion particles of double-stranded DNA. The basis of the theory is the concept of absorption of electromagnetic waves by large molecular systems. The effect of physical parameters of dispersion particles on their circular dichroism is theoretically determined. It is experimentally demonstrated that circular dichroism can be used as a convenient tool for creating an optical analytical system for the determination of biologically active compounds that interact with DNA molecules.  相似文献   

4.
Optics and Spectroscopy - Circular dichroism (CD) spectra of liquid crystalline dispersions formed as a result of phase exclusion of double-stranded DNA molecules from aqueous-salt-poly(ethylene...  相似文献   

5.
The properties of the cholesteric liquid-crystal dispersion containing deoxyribonucleic acid (DNA) molecules and gadolinium ions are investigated using the neutron activation analysis. The cholesteric structure of the DNA-Gd complex is formed by double-stranded DNA molecules and Gd3+ cations in nanoparticles. The DNA concentration in nanoparticles reaches 350 mg/ml. The gadolinium concentration in the DNA-Gd complex is determined using the neutron activation analysis. It is found that the DNA-Gd complex contains approximately 1.5 gadolinium atoms per phosphate group of the DNA molecule. The local gadolinium concentration in the nanoparticle reaches 250 mg/ml.  相似文献   

6.
Explicit expressions for electrostatic interaction between stiff DNA duplexes of finite length are obtained. These expressions allow for the helical symmetry of charge distribution on DNA molecules and reveal chiral and non-chiral interaction terms. Asymptotic expressions at small twist angles are applied to evaluate the cholesteric pitch and the twist elastic constant and their dependence on the length of DNA fragments. These estimates suggest an explanation for the large value of the cholesteric pitch and its nonmonotonic variation with the density of the liquid crystal. An analysis of biaxial correlations rationalizes the driving force of the transition from the cholesteric to hexagonal phase upon dehydration.  相似文献   

7.
Phase behavior of short double-stranded DNA molecules dissolved in the water-containing polymer matrix is considered theoretically. Flexible-chain polymer molecules are assumed to be neutral. The phase behavior of DNA fragments is shown to be governed by the effective attraction, occurring due to polyvalent cations dissolved in water, and the osmotic pressure of the flexible-chain polymer.  相似文献   

8.
We report conclusive high resolution small angle x-ray scattering evidence that long DNA fragments form an untwisted line hexatic phase between the cholesteric and the crystalline phases. The line hexatic phase is a liquid-crystalline phase with long-range hexagonal bond-orientational order, long-range nematic order, but liquidlike, i.e., short-range, positional order. So far, it has not been seen in any other three dimensional system. By line-shape analysis of x-ray scattering data we found that positional order decreases when the line hexatic phase is compressed. We suggest that such anomalous behavior is a result of the chiral nature of DNA molecules.  相似文献   

9.
It is shown that experimental results on the influence of various factors in the formation efficiency and structure of cholesteric liquid-crystal dispersions of nucleic acids cannot be consistently described using conventional theories of liquid crystal formation. A new model is proposed for the interaction of nucleic acid segments which allows for a change in the particular structure of the solvent hydrogen bonds in the presence of nucleic acid molecules. The conclusions of the model agree with existing spectroscopic and structural investigations of DNA dispersions. According to our model, interaction between nucleic acid molecules and solvent modifies proton tunneling processes in the latter, leading to effective interaction between the nucleic acids. A theoretical analysis of the model is made using a pseudospin formalism in which the effective interaction potential of the nucleic acid segments is calculated. It is shown that this potential may lead to nematic ordering for small distances between the nucleic acid molecules (R ≤ 30 Å) and cholesteric ordering for large distances.  相似文献   

10.
We report a study on charged, filamentous virus called M13, whose suspensions in water exhibit a chiral nematic (cholesteric) phase. In spite of the right-handed helicity of the virus, a left-handed phase helicity is found, with a cholesteric pitch which increases with temperature and ionic strength. Several sources of chirality can be devised in the system, ranging from the subnanometer to the micrometer length scale. Here an explanation is proposed for the microscopic origin of the cholesteric organization, which arises from the helical arrangement of coat proteins on the virus surface. The phase organization is explained as the result of the competition between contributions of opposite handedness, deriving from best packing of viral particles and electrostatic interparticle repulsions. This hypothesis is supported by calculations based on a coarse-grained representation of the virus.  相似文献   

11.
12.
Particles can adsorb strongly at liquid interfaces due to capillary forces, which in practice can confine the particles to the interface. Here we investigate the electrohydrodynamic flow driven packing and deformation of colloidal particle layers confined at the surface of liquid drops. The electrohydrodynamic flow has a stagnation point at the drop equator, leading to assembly of particles in a ribbon shaped film. The flow is entirely controlled by the electric field, and we demonstrate that AC fields can be used to induce hydrodynamic “shaking” of the colloidal particle film. We find that the mechanical properties of the film is highly dependent on the particles: monodisperse polystyrene beads form packed granular monolayers which “liquefies” upon shaking, whereas clay mineral particles form cohesive films that fracture upon shaking. The results are expected to be relevant for understanding the mechanics and rheology of particle stabilized emulsions.  相似文献   

13.
The interaction of pyrite (FeS2) with water at the uniform heating (1.5 K/min) of the reaction mixture to 923 K and its subsequent cooling (about 3 K/min) to 423 K is studied. The reaction products are analyzed using the methods of mass-spectrometry, elemental and X-ray diffraction analyses, and scanning electron microscopy. It is established that H2S, SO2, and rhombic and hexagonal pyrrhotite (FeS) are formed while heating, and the subsequent cooling of the reaction system gives rise to the formation of H2S, H2, cubic pyrite, and monoclinic pyrrhotite exhibiting ferromagnetic properties. It is shown that the transformations FeS2 → FeS → FeS x (1 < x ≤ 2) are accompanied by changes in the morphology and size of particles.  相似文献   

14.
Molecular modeling of the cholesteric liquid crystal polyester poly[oxy(1,2 - dodecane)oxycarbonyl-1,4-phenyleneoxycarbonyl-1,4-phenylenecarbonyloxy-1,4-phenylenecarbonyl] (PTOBDME), [C34H36O8] n , synthesized in our laboratory and thermally characterized by differential scanning calorimetry (DSC), was performed to explain both its cholesteric mesophase and 3D crystalline structure. Conformational analysis (CA) was run for the monomer both by systematic search and with molecular dynamics (MD) simulations. Minima energy conformers were “polymerized” with Cerius2 and helical, cholesteric molecules were obtained in all cases. Our models agree with the chiral behavior observed by X-ray diffraction (XRD), thermooptical analysis (TOA) and circular dichroism (CD) experiments. Crystal packing of the polymer molecules were simulated in cells with parameters a and b obtained from experimental powder X-ray diffraction patterns and c calculated from the translational repetitive unit during the theoretical polymerization. Recalculated X-ray powder diffraction patterns of our models matched the observed ones. Morphology simulation from those crystal models is in good agreement with the crystals observed by optical microscopy. We have also modeled the self-associating nature of those polyesters when dispersed in aqueous media. Simulation of our models surrounded by different solvents, such as water and chloroform, were performed by calculating their interaction energies, coordination numbers, and mixing energies, applying Monte Carlo simulation techniques based on the Flory-Huggins theory. These results were compared with their experimental vibrational Fourier transform (FT)–Raman spectra in the regions in which structural marker bands of the polymer appear.  相似文献   

15.
The dipole-dipole contribution to the energy of the pair interaction between DNA molecules has been calculated and analyzed. Rigid fragments of DNA, i.e., of a length of about the persistent length, which have discrete dipole moments of base pairs, are considered. For a given distance between the centers of mass of molecules, the energy of the dipole-dipole interaction is a function of three angular variables; the angles ?1 and ?2 between the central dipoles of both molecules and the z axis passing through the centers of the molecules, as well as the angle ξ between long axes of the molecules, are taken as these variables. It is shown that the dipole energy has minima when the mutual orientation of the molecules satisfies one of the following conditions: (i) ?1 = ?2 = 0 or (ii) ?1 = ?2 = π. The cholesteric twist angle ξ can be both positive and negative in dependence on the type of the minimum. For realistic cholesteric dispersion parameters, the dipole energy is only slightly lower than the experimentally known binding energy of the molecules in dispersion. The results allow the assumption that the dipole forces significantly affect the structure and other properties of DNA suspensions; in particular, they can lead to nontrivial texture phenomena, biaxial correlation, and multistability.  相似文献   

16.
The problem of extracting quantitative information on individual particle properties from spectroscopic measurements conducted at concentrations where particle interactions become significant is of great industrial and theoretical importance. For dispersions of charged particles, this can happen at fairly low concentrations. The effect of the fluid (slurry) structure has to be taken into account to interpret the light scattering spectra of such dispersions. In this paper, a hybrid method that addresses the effect of the fluid structure is proposed. The hybrid approach describes the fluid structure by relating the “effective” Percus‐Yevick hard‐sphere parameters to the system parameters using empirical models. The feasibility of this approach is examined through a theoretical study with data generated by Monte Carlo simulations of a monodisperse dispersion of charged spherical particles using realistic interaction potentials under single scattering conditions.  相似文献   

17.
Raman spectra of GaAs nanowhiskers that are grown on different substrates and differ from one another by the content of the sphalerite and wurtzite phases have been investigated. Special attention has been focused on the manifestation of structural features in the scattering spectra of nanowhiskers. It has been established that the nanowhiskers are characterized both by random inclusions of wurtzite layers in the sphalerite structure and by the continuous growth in the wurtzite phase. The interpretation of the scattering spectrum agrees with the concept of summation of the dispersion curves of the sphalerite structure upon transition to the wurtzite structure, which leads to a transformation of zone-boundary modes at the L point of the Brillouin zone into zone-center modes of the wurtzite structure and, as a consequence, to the appearance of a number of new fundamental modes of different symmetries. An analysis of the Raman spectra has revealed the formation of the hexagonal 4H polytype in narrow layers of nanowhiskers due to a random packing of hexagonal layers. The coexistence of the sphalerite and wurtzite phases in GaAs nanowhiskers completely correlates with the photoluminescence spectra measured for the same samples.  相似文献   

18.
The properties of materials largely reflect the degree and character of the localization of the molecules comprising them so that the study and characterization of particle localization has central significance in both fundamental science and material design. Soft materials are often comprised of deformable molecules and many of their unique properties derive from the distinct nature of particle localization. We study localization in a model material composed of soft particles, hard nanoparticles with grafted layers of polymers, where the molecular characteristics of the grafted layers allow us to “tune” the softness of their interactions. Soft particles are particular interesting because spatial localization can occur such that density fluctuations on large length scales are suppressed, while the material is disordered at intermediate length scales; such materials are called “disordered hyperuniform”. We use molecular dynamics simulation to study a liquid composed of polymer‐grafted nanoparticles (GNP), which exhibit a reversible self‐assembly into dynamic polymeric GNP structures below a temperature threshold, suggesting a liquid‐gel transition. We calculate a number of spatial and temporal correlations and we find a significant suppression of density fluctuations upon cooling at large length scales, making these materials promising for the practical fabrication of “hyperuniform” materials.  相似文献   

19.
We show that geometric confinement dramatically affects the shear-induced configurations of dense monodisperse colloidal suspensions; a new structure emerges, where layers of particles buckle to stack in a more efficient packing. The volume fraction in the shear zone is controlled by a balance between the viscous stresses and the osmotic pressure of a contacting reservoir of unsheared particles. We present a model that accounts for our observations and helps elucidate the complex interplay between particle packing and shear stress for confined suspensions.  相似文献   

20.
ABSTRACT

Properties of 4-n-pentylphenyl-4’-n-octyloxythiobenzoate (8OS5), belonging to the nOS5 homologous series, have been studied by complementary methods. The phase sequence, the phase transition temperatures, the thickness of molecular layers, the average distance between long axes of molecules and the correlation length were determined during cooling and heating. For the first time, simultaneous X-ray diffraction and differential scanning calorimetry measurements have been used to study mesomorphic properties. The results are compared with the ones obtained in standard measurements by means of differential scanning calorimetry, X-ray diffraction and polarizing optical microscopy. Meaning of experimental procedures applied in investigations of monotropic mesophases below a melting point is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号