首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal gold particles were supported onto the surface of aluminum oxide by physical vapor deposition. The effects of thermal treatments at 30?800°C both in a vacuum and in an atmosphere of O2 (5 mbar), CO (5 mbar), or a mixture of CO + O2 (5 mbar of each) on the samples of Au/Al2O3 were studied by X-ray photoelectron spectroscopy. An increase in the Au4f line intensity in the course of gold deposition was accompanied by a shift of this line toward smaller binding energy. Upon the supporting of a maximum quantity of gold, the binding energy E b(Au4f 7/2) became smaller than the value characteristic of the bulk metal. It was hypothesized that this can be explained by the formation of negatively charged Auδ? particles due to electron density transfer from the support to the particles of gold. In the course of the heating of Au/Al2O3 in a vacuum or in a reaction atmosphere, the agglomeration of small gold particles occurred; this fact manifested itself in a decrease in the atomic ratio [Au]/[Al]. In all of the atmospheres, the Au particles supported on Al2O3 exhibited high thermal stability; considerable changes in the ratio [Au]/[Al] were observed only at temperatures higher than 600°C.  相似文献   

2.
Gold-palladium catalysts supported on cerium oxide were synthesized with the double complex salts. X-ray photoelectron spectroscopy (XPS) and other physicochemical methods (TEM, TPR) were used to demonstrate that synthesis of highly active palladium catalysts requires the oxidative treatment stimulating the formation of a catalytically active surface solid solution Pd x Ce1?x O2, which is responsible for the lowtemperature activity (LTA) in the reaction CO + O2. In the case of gold catalysts, active sites for the lowtemperature oxidation of CO are represented by gold nanoparticles and its cationic interface species. Simultaneous deposition of two metals increases the catalyst LTA due to interaction of both gold and palladium with the support surface to form a Pd1?x CexO2 solid solution and cationic interface species of palladium and gold on the boundary of Pd-Au alloy particles anchored on the solid solution surface.  相似文献   

3.
Gold catalysts with loadings ranging from 0.5 to 7.0 wt% on a ZnO/Al2O3 support were prepared by the deposition–precipitation method (Au/ZnO/Al2O3) with ammonium bicarbonate as the precipitation agent and were evaluated for performance in CO oxidation. These catalysts were characterized by inductively coupled plasma-atom emission spectrometry, temperature programmed reduction, and scanning transmission electron microscopy. The catalytic activity for CO oxidation was measured using a flow reactor under atmospheric pressure. Catalytic activity was found to be strongly dependent on the reduction property of oxygen adsorbed on the gold surface, which related to gold particle size. Higher catalytic activity was found when the gold particles had an average diameter of 3–5 nm; in this range, gold catalysts were more active than the Pt/ZnO/Al2O3 catalyst in CO oxidation. Au/ZnO/Al2O3 catalyst with small amount of ZnO is more active than Au/Al2O3 catalyst due to higher dispersion of gold particles.  相似文献   

4.
Based on the modulated electronic properties of Fe3O4-graphene (Fe3O4/GN composite) as well as the outstanding complexation between Pb2+ and natural substances garlic extract (GE), a novel electrochemical sensor for the determination of Pb2+ in wastewater was prepared by immobilization of Fe3O4/GN composite integrated with GE onto the surface of glassy carbon electrode (GCE). Fe3O4/GN composite was employed as an electrochemical active probe for enhancing electrical response by facilitating charge transfer while GE was used to improve the selectivity and sensitivity of the proposed sensor to Pb2+ assay. The electrochemical sensing performance toward Pb2+ was appraised by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and square wave voltammetry (SWV). Under the optimized condition, the sensor exhibited two dynamic linear ranges (LDR) including 0.001 to 0.5 nM and 0.5 to 1000 nM with excellent low detection limit (LOD) of 0.0123 pM (S/N =?3) and quantification limit (LOQ) of 0.41 pM (S/N =?10). Meanwhile, it displayed remarkable stability, reproducibility (RSD of 3.61%, n =?3), and selectivity toward the assay for the 100-fold higher concentration of other heavy metal ions. Furthermore, the novel sensor has been successfully employed to detect Pb2+ from real water samples with satisfactory results.  相似文献   

5.
Chemical looping combustion (CLC) by direct use of coal as fuel is promising with its prominent advantages, but insufficient conversion of coal in the CLC system is a great limitation. In this research, in order to explore the limiting factor inherent for coal conversion in the CLC system, from the perspective of chemical structure of coal, reaction of a selected Chinese typical coal (designated as LZ) with Fe2O3 was systematically investigated. Thermogravimetric investigation of LZ coal reaction with Fe2O3 at the oxygen excess number Φ = 1.0 indicated that after dehydration, there existed three discernible reaction stages as observed, which were attributed to the combined reactions of Fe2O3 with the primary and secondary gaseous products evolved from LZ coal. Meanwhile, the Fe2O3 provided should be controlled around Φ = 1.0 aiming at effective conversion of LZ coal and simultaneous proper utilization of Fe2O3. And then, both gaseous Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy analysis of the gaseous and solid products formed from reaction of LZ coal with Fe2O3 at Φ = 1.0 indicated that full conversion of LZ coal was not reached with a little unconverted CO occurring, though partial Fe2O3 was over reduced to lower valence of oxides than Fe3O4. Furthermore, in order to explore the insufficient conversion of LZ coal at the molecular scale, X-ray photoelectron spectroscopy analysis revealed the distribution and evolution of the carbon functional groups involved in LZ coal after its reaction with Fe2O3 and further found that effective conversion of the aromatic/aliphatic C=C/C–H groups in LZ coal was the rate-limited step at the molecular scale with the relative content of these groups still dominated around 59% after LZ coal reaction with Fe2O3. Finally, solid IR (infrared) analysis and quantitative evaluation of the solid products of LZ coal reaction with Fe2O3 indicated that the length of aliphatic C–H groups decreased due to its partial disintegration, while the aromatization of the residual char was aggravated with the higher relative IR intensity ratio of the aromatic C=C groups, which reduced the reactivity of LZ residual char and hindered the full conversion of LZ coal.  相似文献   

6.
The heat capacities of Pb2V2O7 and Pb3(VO4)2 as a function of temperature in the range 350–965 K have been studied by the differential scanning calorimetry method. The CP = f(T) curve for Pb2V2O7 is described by the equation Cp = (230.76 ± 0.51) + (73.60 ± 0.50)×10-3T ? (18.38 ± 0.54)×105T-2 in the entire temperature range. For Pb3(VO4)2, there is a well-pronounced extreme point in the CP = f(T) curve at T = 371.5 K, which is caused by the existence of a structural phase transition. The thermodynamic properties of the oxide compounds have been calculated.  相似文献   

7.
Using Fe3O4 nano-particles as seeds, a new type of Fe3O4/Au composite particles with core/shell structure and diameter of about 170 nm was prepared by reduction of Au3+ with hydroxylamine in an aqueous solution. Particle size analyzer and transmission electron microscope were used to analyze the size distribution and microstructure of the particles in different conditions. The result showed that the magnetically responsive property and suspension stability of Fe3O4 seeds as well as reduction conditions of Au3+to Au0are the main factors which are crucial for obtaining a colloid of the Fe3O4/Au composite particles with uniform particle dispersion, excellent stability, homogeneity in particle sizes, and effective response to an external magnet in aqueous suspension solutions. UV-Vis analysis revealed that there is a characteristic peak of Fe3O4/Au fluid. For particles with d(0.5)=168 nm, the λmax is 625 nm.  相似文献   

8.
Yttrium germanate Y2Ge2O7 was prepared by solid-phase synthesis from a stoichiometric Y2O3–GeO2 mixture under multistage calcination in air within a temperature range of 1273–1473 K. The molar heat capacity of polycrystalline samples was measured by differential scanning calorimetry (DSC), and the C P = f(T) dependence was used to calculate the thermodynamic properties of yttrium digermanates, such as the enthalpy and entropy changes and the reduced Gibbs energy.  相似文献   

9.
Layered transition metal oxide LiNi x Co y MnzO2 cathode materials with different Li amount were successfully synthesized via co-precipitation method. Monodispersed Li[Ni0.5Co0.2Mn0.3]O2 and Li-rich Li1.1[Ni0.5Co0.2Mn0.3]O2 spherical agglomeration consisted of secondary particles, which is favorable for the higher tap-density of materials, can be easily obtained. The pouch-typed cells with obtained materials were assembled to investigate electrochemical performance at level of full-cell. The results show that the assembled pouch-typed full-cells with Li-rich sample present higher capacity, better rate capability and cycle life.  相似文献   

10.
The TiL α, FeL α and OK α ultrasoft X-ray emission bands obtained in experiment reflect, respectively, the energy distribution of mainly the Ti3d, Fe3d and O2p electronic states in Ti4Fe2O compound, which is an efficient hydrogen absorber for energy cells. Full and partial densities of electronic states for all atoms constituting the indicated oxide were calculated by a modified method of associated plane waves (APW) using the WIEN2k software package. The APW calculation data for Ti4Fe2O compound as well as superposition of TiL α, FeL α and OK α ultrasoft X-ray emission bands on a single energy scale indicate that O2p states in the oxide are localized mainly near the bottom of the valence band, the major contribution near the ceiling of the valence band belonging to Fe3d and Ti3d states. According to the APW calculation, the major contribution to the bottom of Ti4Fe2O conduction band is made by Fe3d* and Ti3d* states. The APW data for Ti4Fe2O are supported by the cluster calculation performed for this compound using a FEFF82 software package.  相似文献   

11.
The molar heat capacity of Pb4V2O9 and Pb8V2O13 in the temperature range 350–1000 K was measured by differential scanning calorimetry. It was determined that the plot Cp = f(T) for Pb8V2O13 has an extremum within the range 416–516 K, which is due to a phase transition. A correlation was found between the heat capacity and composition of oxides in the PbO–V2O5 system. The data obtained allowed one to predict the specific heat capacity value for Pb(VO3)2.  相似文献   

12.
The mechanism of formation of the perovskite-like layered structure of the oxide Gd2SrFe2O7 was studied. The limiting stages are those of formation of phases with perovskite (GdFeO3, SrFeO3?x ) and K2NiF4 (GdSrFeO4) structures. The Mössbauer study has shown that iron atoms exist in a heterovalent state (Fe3+ and Fe4+) only in the structure of SrFeO3?x ).  相似文献   

13.
The phase composition has been studied and an equilibrium phase diagram has been designed for the Al2O3-Li2O-R2O5 (R = Ta or Nb) systems in the subsolidus region up to 1000°C and 85 mol % Li2O. New phases with the composition Li1+x Al1?x O2?x , where x = 0–0.67, have been found.  相似文献   

14.
The characteristics of crystal structures of the titanium(IV) diammonium (Ti(NH4)2P4O13) and tin(IV) diammonium (Sn(NH4)2P4O13) tetraphosphates, which are isostructural with similar silicon(IV) and germanium(IV) salts, have been obtained by the Rietveld method using X-ray powder diffraction data. The compounds crystallize in the triclinic system, space group P \(\overline 1 \), Z = 2, a = 15.0291(7) Å, b = 7.9236(4) Å, c = 5.0754(3) Å, α = 99.168(3)°, β = 97.059(3)°, γ = 83.459(3)° for Ti(NH4)2P4O13 and a = 15.1454(7) Å, b = 8.0103(5) Å, c = 5.1053(3) Å, α = 99.898(6)°, β = 96.806(3)°, γ = 83.881(4)° for Sn(NH4)2P4O13. The structure is refined in the isotropic approximation using the pseudo-Voigt function: R p = 0.077, R Bragg = 0.045, R F = 0.057 for Ti(NH4)2P4O13; R p = 0.082, R Bragg = 0.044, R F = 0.046 for Sn(NH4)2P4O13. The hydrogen atoms of the ammonium cations are placed in the calculated positions. A comparative analysis of the structures of the compounds of the MIV(NH4)2P4O13 (MIV = Si, Ge, Ti, Sn) series has been carried out.  相似文献   

15.
Interactions in the Al2TiO5-Ti2O3 system were studied and the regions of existence of Al2?2xTi 2x 3+ Ti4+O5 solid solutions with a pseudobrookite structure were determined.  相似文献   

16.
X-ray photoelectron spectroscopy (XPS) (with AlKα and AgLα radiations) and scanning tunneling microscopy (STM) were used to study the interaction of two model samples prepared by vacuum evaporation of platinum on highly oriented pyrolytic graphite (HOPG) with NO2 at room temperature. According to STM data, platinum evaporation on the graphite surface produced particles of a flattened shape. In the Pt/HOPGS1 sample with a lower concentration of platinum, the average diameter of particles d and the height-to-diameter ratio h/d were 2.8 nm and 0.29, respectively. In the Pt/HOPG-S2 sample with a higher concentration of platinum, the average values of d and h/d were 5.1 nm and 0.32. When the samples interacted with NO2 (P ≈ 3 × 10–6 mbar), the particles of metallic platinum completely converted to the particles of PtO Upon oxidation, the shape of larger platinum particles in the Pt/HOPG-S2 sample did not change, although for the dispersed particles in the Pt/HOPG-S1 samples under these conditions, the h/d ratio increases. The reduction of oxide to metal particles on heating the Pt/HOPG-S1 sample in vacuum at 460°С is accompanied by an increase in the size of particles. Their shape became more round compared to the initial one. It was found that X-ray radiation affects the state of platinum in the oxidized sample by reducing the surface layer of PtO2 to PtO.  相似文献   

17.
Erbium stannate Er2Sn2O7 and thulium stannate Tm2Sn2O7 with a pyrochlore-type structure were produced by solid-phase synthesis by calcining stoichiometric mixtures of the respective oxides in air at 1473 K for 240 and 200 h. The high-temperature heat capacity of Er2Sn2O7 and Tm2Sn2O7 was studied by differential thermal calorimetry at 353–1000 K. From the experimental dependences C P = f(T), the thermodynamic functions (enthalpy change, entropy change, and reduced Gibbs free energy) of oxide compounds were calculated.  相似文献   

18.
The crystal and molecular structure of doubly protonated tetraazamacrocyclic complex of gold(III) [Au(C14H24N4)][H3O](ClO4)4 has been determined. The crystals are monoclinic: a = 11.158(2) Å, b = 8.243(1) Å, c = 14.756(2) Å; β = 98.65(1)°, V = 1341.8(3) Å3, Z = 2, ρ(calc) = 1.134 g/cm3, space group P21/n. The structure is built of almost flat centrosymmetrical Au(C14H24N4)]3+ and [H3O]+ cations and [ClO4]? anions. The gold atom is coordinated with four nitrogen atoms of the ligand forming a flat square. The coordinated ligand is protonated at its γ-carbon atoms of the two six-membered chelate rings. The Au-N bond lengths are almost identical (the mean value is 1.994 Å). The six-membered rings of the complex contain C=N diimine bonds. The [H3O]+ oxonium ion has H-bonds with the oxygen atoms of perchlorate ions.  相似文献   

19.
Iron oxide-loaded Cu2O photocatalysts were prepared by a facile hydrothermal method. The binary mixed metal oxide photocatalyst was characterized by XRD, FE-SEM, FTIR, UV–Vis-DRS, particle size and zeta potential measurements. XRD analysis showed that Fe2O3/Cu2O catalysts were phase pure and highly crystalline in nature. FE-SEM images revealed the formation of nanospherical Fe2O3 over the Cu2O surface during hydrothermal reaction. From UV–Vis diffuse reflectance spectroscopy studies, the optical band gap of the Fe2O3/Cu2O photocatalyst was found to be slightly red-shifted to 1.85 eV, after loading of Fe2O3. The zeta potential analysis revealed that the surface of the Fe2O3/Cu2O photocatalyst was negatively charged in neutral solution. The loading of n-type Fe2O3 on p-type Cu2O augments the charge carrier separation at the interface, which was evident from the enhanced photodegradation of organic pollutants (Methylene blue and Rhodamine B dyes) under visible light irradiation.  相似文献   

20.
The crystal structure and the formation conditions of crystals of the LiFe5O8 ordered phase obtained from the solution-melt of the Bi2O3-Fe2O3-B2O3-LiCl quadruple system are refined. The crystals are black, octahedral, of cubic symmetry (space group P4332). Unit cell parameters: a = 8.3339(1) Å, V = 578.82(1) Å3, Z = 4, d calc = 4.753 g/cm3. From 6046 of the collected array I hkl 358 are independent (R int = 0.0321). As a result of anisotropic refinement of structural parameters, R 1 factor is found to be 0.0186 (wR 2 = 0.0467). Lithium atoms are in octahedral environment, Li-O is 2.109(1) Å; iron atoms are of two types: in octahedra with Fe-O (by two) distances of 1.9586(9) Å, 2.0152(9) Å, and 2.0652(10) Å and tetrahedra with Fe-O (three) 1.8848(10) Å and 1.914(2) Å. The structure is of inverted spinel type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号