首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel nanostructures of ZnF(OH) nanoplates decorated rhombus-shaped ZnF(OH) nanorods were fabricated. The obtained precursors were transformed by calcination to porous hierarchical ZnO nanostructures with the original morphologies retained. Field emission scanning electron microscope images exhibit that the nanoplates are grown in the interstices between the nanorods and on the top of the nanorods. The structure and composition of the obtained products have been confirmed by transmission electron microscope and X-ray diffraction measurements. The obtained ZnO nanostructures have been successfully used in solar cells. The light-to-electricity conversion results show that the complex nanostructures exhibit a power conversion efficiency of 1.36% with a photoelectrode thickness of 4.2 µm, which is comparable to those based on 40 µm vertically aligned hexagonal-shaped ZnO nanowire array photoelectrodes. These results indicate that the synthesized ZnO nanoplate decorated rhombus-shaped ZnO nanorod nanostructures are more suitable for application as a photoelectrode in solar cells.  相似文献   

2.
孟秀清  汤宁  钟绵增  叶慧群  方允樟 《中国物理 B》2016,25(10):107105-107105
High-quality Sb_2Te_3 nanostructures are synthesized by a simple hydrothermal method. The morphologies of the nanostructures change from hexagonal nanoplates to nanorods with the extension of growth time. Secondary nucleation is the dominant factor responsible for the change of the morphologies. Structural analyses indicate that all the obtained nanostructures are well crystallized. IR-active phonons are mainly observed in the Raman spectra of the nanoplates and nanorods. The slight deviations are observed in the Raman modes between the nanoplates and nanorods, which could originate from confinement effect in the nanostructures.  相似文献   

3.
The zinc oxide (ZnO) nanorods/plates are obtained via hydrothermal method assisted by etched porous Al film on Si substrate. The products consist of nanorods with average diameter of 100 nm and nanoplates with thickness of 200-300 nm, which are uniformly distributed widely and grown perpendicularly to the substrate. The ZnO nanoplates with thickness of 150-300 nm were grown on Si substrate coated with a thin continuous Al film (without etching) in the same aqueous solution. The growth mechanism and room temperature photoluminescence (PL) properties of ZnO nanorods/plates and nanoplates were investigated. It is found that the introduction of the etched Al film plays a key role in the formation of ZnO nanorods/plates. The annealing process is favorable to enhance the UV PL emissions of the ZnO nanorods/plates.  相似文献   

4.
The undoped and Al-doped ZnO nanostructures were fabricated on the ITO substrates pre-coated with ZnO seed layers using the hydrothermal method. The undoped well-aligned ZnO nanorods were synthesized. When introducing the Al dopant, ZnO shows various morphologies. The morphology of ZnO changes from aligned nanorods, tilted nanorods, nanotubes/nanorods to the nanosheets when the Al doping concentrations increase. The ZnO nanostructures were characterized by X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence and Raman technology. The Al doping concentrations play an important role on the morphology and optical properties of ZnO nanostructures. The possible growth mechanism of the ZnO nanostructures was discussed.  相似文献   

5.
Unique ZnO nanocomplexes of one-dimensional nanorods combined with two-dimensional hexagonal plates are fabricated by a chemical vapor deposition method without using any catalysts. Cathodoluminescence images show that the green emission from the nanoplate is much stronger than that from the nanorod, which suggests the oxygen vacancies are more abundant in the ZnO nanoplates. Our study finds that the growth of one-dimensional ZnO nanorods and low-dimensional ZnO complexes can be switched by directly controlling the source oxygen.  相似文献   

6.
Tuning the morphology, size and aspect ratio of free standing ZnO nanostructured arrays by a simple hydrothermal method is reported. Pre-coated ZnO seed layers of two different thicknesses (≈350 nm or 550 nm) were used as substrates to grow ZnO nanostructures for the study. Various parameters such as chemical ambience, pH of the solution, strength of the Zn2+ atoms and thickness of seed bed are varied to analyze their effects on the resultant ZnO nanostructures. Vertically oriented hexagonal nanorods, multi-angular nanorods, hexagonal diskette and popcorn-like nanostructures are obtained by altering the experimental parameters. All the produced nanostructures were analysed by X-ray powder diffraction analysis and found to be grown in the (002) orientation of wurtzite ZnO. The texture co-efficient of ZnO layer was improved by combining a thick seed layer with higher cationic strength. Surface morphological studies reveal various nanostructures such as nanorods, diskettes and popcorn-like structures based on various preparation conditions. The optical property of the closest packed nanorods array was recorded by UV-VIS spectrometry, and the band gap value simulated from the results reflect the near characteristic band gap of ZnO. The surface roughness profile taken from the Atomic Force Microscopy reveals a roughness of less than 320 nm.  相似文献   

7.
ZnO nanoplates with Er-doping concentrations varying in the range from 3 to 7 wt% and co-doped with (Er–Yb) (7 + 7 wt%) were successfully prepared by wet chemical precipitation method. The effects of doping on the structural and optical properties of ZnO nanostructures have been systematically investigated. The structural morphology of the prepared nanostructures was found to change with increasing Er-doping concentrations. The visible photoluminescence and infrared photoluminescence of the prepared nanostructures were measured at room temperature. The intensity of visible emission spectra was found to increase with increasing Er-doping concentrations and was further enhanced for (Er–Yb) co-doped ZnO nanoplate samples. Additionally, Er-doped (7 wt%) and Yb-doped (7 wt%) ZnO nanoplates showed an enhanced emission peak at 950 nm, whereas two enhanced emission peaks at 950 and 980 nm have been found for (Er–Yb)-co-doped (7 + 7 wt%) ZnO nanoplates samples when excited at 310, 365 and 371 nm excitation wavelengths.  相似文献   

8.
ZnO nanostructures were grown on silicon, porous silicon, ZnO/Si and AlN/Si substrates by low-temperature aqueous synthesis method. The shape of nanostructures greatly depends on the underlying surface. Scattered ZnO nanorods were observed on silicon substrate, whereas aligned ZnO nanowires were obtained by introducing sputtered ZnO film as a seed layer. Furthermore, both the combination of nanorods and the bunch of nanowires were found on porous silicon substrates, whereas platelet-like morphology was observed on AlN/Si substrates. XRD patterns suggest the crystalline nature of aqueous-grown ZnO nanostructures and high-resolution transmission electron microscopy images confirm the single-crystalline growth of the ZnO nanorods along [0 0 1] direction. Room-temperature photoluminescence characterization clearly shows a band-edge luminescence along with a visible luminescence in the yellow spectral range.  相似文献   

9.
ZnO nanorods and nanodisks were formed on indium-tin-oxide-coated glass substrates by using an electrochemical deposition method. Scanning electron microscopy images showed that the ZnO nanorods were transformed into nanodisks with increasing Zn(NO3)2 concentration. X-ray diffraction patterns showed that the ZnO nanostructures had wurzite structures. The full widths at half maxima of the near band-edge emission peak of photoluminescence spectra at 300 K for ZnO nanorods were small, indicative of the high quality of the nanorods. These results indicate that the structural and the optical properties of ZnO nanostructures vary by changing Zn(NO3)2 concentration.  相似文献   

10.
Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their appli- cations in enhancing light trapping. Enhanced light trapping can result in more effective absorption in solar cells, thus leading to higher short-circuit current density and conversion efficiency. We develop randomly distributed and modified ZnO nanorods, which are designed and fabricated by the following processes: the deposition of a ZnO seed layer on sub- strate with sputtering, the wet chemical etching of the seed layer to form isolated islands for nanorod growth, the chemical bath deposition of the ZnO nanorods, and the sputtering deposition of a thin Al-doped ZnO (ZnO:Al) layer to improve the ZnO/Si interface. Solar cells employing the modified ZnO nanorod substrate show a considerable increase in solar energy conversion efficiency.  相似文献   

11.
ZnO and ZnMgO nanostructures were synthesized on Si (1 0 0) substrates with the assistance of a gold catalyst, using a thermal evaporation method with a ZnO/ZnMgO compound as the source material. The substrates were placed in different temperature zones. ZnO nanostructures with different morphologies and different compounds were obtained at different substrate temperatures. Nanostructures with nanorods and nanosheets morphologies formed in the low and high temperature zones, respectively. The nanorods grown in the low temperature zone had two phases, hexagonal and cubic. Energy dispersive X-ray (EDX) results showed that the nanorods with a cubic shape contained more Mg in comparison to the nanowires with a hexagonal shape. We found that the substrate temperature and the gold catalyst were two key factors for the doping of Mg and the formation of nanostructures with different morphologies. Room temperature photoluminescence spectroscopy showed a blue-shift for the nanostructures with the nanorods morphology. This shift could be attributed to Mg effects that were detected in the nanorods.  相似文献   

12.
Wurtzite zinc oxide (ZnO) nanochains have been synthesized through high-pressure pulsed laser deposition. The chain-like ZnO nanostructures were obtained from magnesium (Mg) doped ZnO targets, whereas vertically aligned nanorods were obtained from primitive ZnO targets. The Mg doping has influenced the morphological transition of ZnO nanostructures from nanorods to nanochains. The field emission scanning electron microscope images revealed the growth of beaded ZnO nanochains. The ZnO nanochains of different diameters 40 and 120 nm were obtained. The corresponding micro-Raman spectra showed strong E2H mode of ZnO, which confirmed the good crystallinity of the nanochains. In addition to near band edge emission at 3.28 eV, ZnO nanochains show broad deep level emission at 2.42 eV than that of ZnO nanorods.  相似文献   

13.
In this work, ZnO nanorods (NRs) were fabricated using a low cost chemical bath deposition (CBD) method. The effect of the potassium hydroxide concentration on the fabricated ZnO nanostructures was studied in depth. The optical, structure, and surface morphology properties of the fabricated ZnO nanostructures were investigated using Uv-vis spectroscopy, XRD, and SEM. The results indicate that the formation of hexagonally structured ZnO nanorods with different lengths and diameters was dependent on the KOH concentration. The sample prepared with 2 M of KOH was the best one for optoelectronic applications, since it has the smallest diameters. This sample was annealed at different temperatures (473 K–1073 K). Positron Annihilation Lifetime Spectroscopy was used to determine the defects in the ZnO nanorods. The results show that the positron mean lifetime (τm) decreased as the annealing temperature increased, which means that the overall defects in the ZnO nanorods decreased with increasing temperature. Consequently, higher performance semiconductor devices based on ZnO nanorods could be fabricated after high annealing of the ZnO nanorods.  相似文献   

14.
Four kinds of new one-dimensional nanostructures, celery-shaped nanorods, needle-shaped nanorods, twist fold-shaped nanorods, and awl-shaped nanorods of ZnO, have been grown on single silicon substrates by an Au catalyst assisted thermal evaporation of ZnO and active carbon powders. The morphology and structure of the prepared nanorods are determined on the basis of field-emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The photoluminescence spectra (PL) analysis noted that UV emission band is the band-to-band emission peak and the emission bands in the visible range are attributed to the oxygen vacancies, Zn interstitials, or impurities. The field-emission properties of four kinds of ZnO nanorods have been invested and the awl-shaped nanorods of ZnO have preferable characteristics due to the smallest emitter radius on the nanoscale in the tip in comparison with other nanorods. The growth mechanism of the ZnO nanorods can be explained on the basis of the vapor–liquid–solid (VLS) processes.  相似文献   

15.
Zinc oxide nanorods have been grown by vapor–liquid–solid (VLS) catalytic growth. The optical properties and structures properties of the grown ZnO nanostructures have been studied by photoluminescence, high resolution X-ray diffraction and scanning electron microscopy. The results show that the formation of ZnO nanostructures is strongly influenced by the growth conditions and used substrates. It was found that oriented ZnO nanorods are grown more easily on a substrate with a similar crystalline structure as ZnO. By optimizing growth conditions, oriented-ZnO nanorods grown on Si(001) substrate with a diameter of around 300 nm and lengths of 20 to 35 μm have been achieved, and they show excellent optical properties. Laser action has been observed at room temperature by using optical pumping. PACS 81.05.Dz; 81.10.Bk; 81.16.Hc  相似文献   

16.
Herein, rod-like ZnO nanostructures were synthesized via a novel hydrothermal route using Zn(OAc)2, ethylenediamine and hydrazine as a new set of starting reagents. The as-synthesized products were characterized by techniques including XRD, EDS, SEM, XPS, Pl and FTIR. The prepared ZnO nanostructures were utilized as shell on TiO2 film in DSSCs. Effect of precursor type, morphology and thickness of ZnO shell (number of electrophoresis cycle) on solar cells efficiency were well studied. Our results showed that ethylenediamine has crucial effect on morphology of synthesized ZnO nanostructures and using ZnO nanostructures leads to an increase in DSSCs efficiency compared to bare TiO2 from 4.66 to 7.13% (~40% improvement). Moreover, highest amount of solar cell efficiency (7.13%) was obtained by using ZnO nanorods with two cycle of electrophoresis for deposition.  相似文献   

17.
Quasi-one-dimensional (1D) nanostructures, such as nanowires, nanobelts and nanorods, are the forefront materials for nanotechnology. To date, such nanostructures have been synthesized for a wide range of semiconductors and oxides, and they are potential building blocks for fabricating numerous nano-scale devices. 1D ZnO nanostructures, due to its unique semiconducting, piezoelectric, and bio-safe properties, have received wide attention. From structure point of view, a common characteristic of ZnO nanostructures is that they are mostly dislocation-free. However, planar and point defects do frequently exist in such nanostructures. The objective of this paper is to present detailed electron microscopy study about the structures of planar defects, such as stacking faults, twins, inversion domain walls that existed in 1D ZnO nanostructures. These planar defects are important for understanding the growth mechanism and relevant physical and possibly chemical properties of 1D ZnO nanostructures.  相似文献   

18.
汤洋 《发光学报》2020,(5):571-578
为在新型太阳能电池等光电器件中应用ZnO纳米结构,需要对ZnO纳米结构阵列的几何形貌及光电物理性质进行裁剪与操控。采用电化学沉积路线制备ZnO纳米柱阵列,In(NO3)3与NH4NO3两种盐类被溶入在传统Zn(NO3)2主电解液中。对ZnO纳米柱阵列进行扫描电子显微镜、透射反射光谱、光致发光光谱测试,分析其形貌与光电物理性质。随着引入的In(NO3)3浓度的增加,ZnO纳米柱阵列的平均直径随之由57 nm减小至30 nm。同时ZnO纳米柱的阵列密度也可降低,进而增大纳米柱间距至41 nm。由于新的盐类的引入,ZnO纳米柱的光学带隙由3.46 eV蓝移至3.55 eV。随着电解液中In(NO3)3的增加,ZnO纳米柱的斯托克斯位移由198 meV减小至154 meV,ZnO纳米柱中的非辐射复合可以得到一定程度的抑制。通过在主电解液中引入In(NO3)3与NH4NO3两种盐类,可对ZnO纳米柱的直径、密度、间距、透射反射率、光学带隙、近带边发射与非辐射复合进行操控与裁剪。  相似文献   

19.
Different morphologies of zinc oxide (ZnO) nanorods and nanotubes, which were grown under the same conditions but different dissolving processes, are prepared in our experiment through hydrothermal method. After the growth process, cooling down the reactor naturally or dissolving at a constant temperature of 40 °C, preferential dissolution will occur at different places on the tip of ZnO nanorods. During the dissolution process, different dissolution rates on the entire surface of nanorod will lead to different nanostructures. ZnO nanorods and nanotubes on Cu substrates display the same PL property with strong green emission but weak UV emission, while ZnO nanorods on Si substrates exhibits a relatively strong UV emission.  相似文献   

20.
ZnO nanowires, nanorods and nanoribbons have been prepared by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si(1 0 0) substrates without any catalyst. The nanostructures are grown as a function of substrate temperature ranging from 900 to 1300 K. These nanostructures are of the size 100–300 nm in diameter or width and several tens of micrometers in length. We studied the influence of the substrate temperature on the luminescent properties of these nanostructures. We observed a strong relationship between the substrate temperature and the green emission band in ZnO, i.e., the photoluminescence study revealed that the green emission peak of the ZnO nanostructures is suppressed relative to the band edge emission when the substrate temperature is decreased from 1300 to 900 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号