首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work is the synthesis and characterization of an appropriate hydrophobic nanoparticle as a collector for flotation of hematit in Gol-E-Gohar Iron Mine Iran. In this investigation, SiO2–TiO2 nanocomposites have been successfully synthesized by hydrothermal process. The morphology, structure, and composition of the as-synthesized nanostructures have been investigated by scanning electron microscopy and transmission electron microscopy. The ability of SiO2–TiO2 nanocomposite to facilitate the froth flotation of pyrite was correlated to the hydrophobicity of the nanoparticles. Furthermore, the efficiency of the mineral flotation process was evaluated in terms of final recovery and grade of S in Gol-e Gohar Iron Ore Complex, Sirjan, Iran.  相似文献   

2.
This review paper reports the recent progress concerning the application of nickel–alumina–zirconia based catalysts to the ethanol steam reforming for hydrogen production. Several series of mesoporous nickel–alumina–zirconia based catalysts were prepared by an epoxide-initiated sol–gel method. The first series comprised Ni–Al2O3–ZrO2 xerogel catalysts with diverse Zr/Al molar ratios. Chemical species maintained a well-dispersed state, while catalyst acidity decreased with increasing Zr/Al molar ratio. An optimal amount of Zr (Zr/Al molar ratio of 0.2) was required to achieve the highest hydrogen yield. In the second series, Ni–Al2O3–ZrO2 xerogel catalysts with different Ni content were examined. Reducibility and nickel surface area of the catalysts could be modulated by changing nickel content. Ni–Al2O3–ZrO2 catalyst with 15 wt% of nickel content showed the highest nickel surface area and the best catalytic performance. In the catalysts where copper was introduced as an additive (Cu–Ni–Al2O3–ZrO2), it was found that nickel dispersion, nickel surface area, and ethanol adsorption capacity were enhanced at an appropriate amount of copper introduction, leading to a promising catalytic activity. Ni–Sr–Al2O3–ZrO2 catalysts prepared by changing drying method were tested as well. Textural properties of Ni–Sr–Al2O3–ZrO2 aerogel catalyst produced from supercritical drying were enhanced when compared to those of xerogel catalyst produced from conventional drying. Nickel dispersion and nickel surface area were higher on Ni–Sr–Al2O3–ZrO2 aerogel catalyst, which led to higher hydrogen yield and catalyst stability over Ni–Sr–Al2O3–ZrO2 aerogel catalyst.  相似文献   

3.
Photocatalytic degradation is an important method to mediate organic pollution in the environment. This article reports Ag-modified SnO2@TiO2 core–shell composite photocatalysts prepared via a hydrothermal method. The Ag modification and core structure in the composite enhanced the photocatalytic activity and stability of TiO2 in Rhodamine B degradation under visible light irradiation. The composite modified in 0.15 M AgNO3 showed an optimal level of photocatalytic activity, as it degraded 99.14 % Rhodamine B in 60 min while pure TiO2 only degraded 45.7 % during the same time.  相似文献   

4.
5.
A series of MoO3/ZrO2–Al2O3 catalysts was prepared and investigated in the sulfur-resistant methanation aimed at production of synthetic natural gas. Different methods including impregnation, deposition precipitation, and co-precipitation were used for preparing ZrO2–Al2O3 composite supports. These composite supports and their corresponding Mo-based catalysts were investigated in the sulfur-resistant methanation, and characterized by N2 adsorption–desorption, XRD and H2-TPR. The results indicated that adding ZrO2 promoted MoO3dispersion and decreased the interaction between Mo species and support in the MoO3/ZrO2–Al2O3 catalysts. The co-precipitation method was favorable for obtaining smaller ZrO2 particle size and improving textural properties of support, such as better MoO3 dispersion and increased concentration of Mo6+ species in octahedral coordination to oxygen. It was found that the MoO3/ZrO2–Al2O3 catalyst with ZrO2Al2O3 composite support prepared by co-precipitation method exhibited the best catalytic activity. The ZrO2 content in the ZrO2Al2O3 composite support was further optimized. The MoO3/ZrO2–Al2O3 with 15 wt % ZrO2 loading exhibited the highest sulfur-resistant CO methanation activity, and excess ZrO2 reduced the specific surface area and enhanced the interaction between Mo species and support. The N2 adsorption-desorption results indicated that the presence of ZrO2 in excessive amounts decreased the specific surface area since some amounts of ZrO2 form aggregates on the surface of the support. The XRD and H2-TPR results showed that with the increasing ZrO2 content, ZrO2 particle size increased. These led to the formation of coordinated tetrahedrally Mo6+(T) species and crystalline MoO3, and this development was unfavorable for improving the sulfur-resistant methanation performance of MoO3/ZrO2–Al2O3 catalyst.  相似文献   

6.
The results of a study of the optimum oxidation conditions in the system UV?nano-Т?О2–K2Cr2O7 in a specially designed photoreactor are presented. The basic parameters of the photocatalytic oxidation of glucose and acetic acid were studied and optimized. The oxidation of organic compounds under the optimized conditions was studied. Nano-TiO2 was shown to be a promising photocatalyst in the design of new oxidation systems for analytical purposes.  相似文献   

7.
The effect of TeO2 additions on the thermal behaviour of zinc borophosphate glasses were studied in the compositional series (100 − x)[0.5ZnO–0.1B2O3–0.4P2O5]–xTeO2 by differential scanning calorimetry, thermodilatometry and heating microscopy thermal analysis. The addition of TeO2 to the starting borophosphate glass resulted in a linear increase of glass transition temperature and dilatometric softening temperature, whereas the thermal expansion coefficient decreased. Most of glasses crystallize under heating within the temperature range of 440–640 °C. The crystallization temperature steeply decreases with increasing TeO2 content. The lowest tendency towards crystallization was observed for the glasses containing 50 and 60 mol% TeO2. X-ray diffraction analysis showed that major compounds formed by annealing of the glasses were Zn2P2O7, BPO4 and α-TeO2. Annealing of the powdered 50ZnO–10B2O3–40P2O5 glass leads at first to the formation of an unknown crystalline phase, which is gradually transformed to Zn2P2O7 and BPO4 during subsequent heating.  相似文献   

8.
Tungstate-containing aluminum oxide is suitable as a catalyst support for hydrodeoxygenation of sunflower oil, ensuring 81–83 wt % yield of liquid products at 380°С, 4.0 MPa, and feed space velocity of 1 h–1. The catalyst acidity increases with increasing tungsten oxide content, leading to an increase in the content of decarboxylation/decarbonylation products and isoparaffins in the product mixture.  相似文献   

9.
10.
The crystallization polytherm of the ternary CO(NH2)2–KNO3–H2O system is plotted for the first time via visual polythermal analysis and calculating ternary eutonics characteristics from data on the boundary elements of two-component systems. The ternary eutonics modeling error does not exceed 3.5%. In addition to the crystallization fields of individual components, the field of the redox reaction that occurs in the system between potassium nitrate and carbamide is shown in the CO(NH2)2–KNO3–H2O diagram by a dashed outline.  相似文献   

11.
Thermal properties of raw aluminosilicate ceramic glazes in the multicomponent system of SiO2–Al2O3–CaO–K2O–Na2O–ZnO modified by ZnO addition were studied by differential thermal analysis (DTA), dilatometry (DIL), hot-stage microscopy (HSM), X-ray diffraction and fourier transform infrared spectroscopy (FTIR). Using the method of differential thermal analysis, the ways in which zinc oxides affect the temperature of transition (T g), crystallisation (T c) were determined. An analysis of the DTA data obtained during thermal tests showed that an increase in ZnO content results in decreasing the T g value. Also, the influence of ZnO on characteristic temperatures and viscosity of glazes was checked. The introduction of zinc oxide (ZnO) into the glaze composition contributes to the decrease in viscosity of such glazes. An increasing ZnO content in the glazes also causes the reduction in softening (T s), half-sphere (T half-sphere) and fusion (T fusion) temperatures. The mid-infrared spectroscopy showed that the thermal properties of glazes in SiO2–Al2O3–CaO–K2O–Na2O–ZnO system modified by addition of ZnO can be associated with the depolymerising influence of zinc ions on the structure of the tested glazes.  相似文献   

12.
Phase equilibria in the LiCl–LiBr–Li2SO4 ternary system and the LiCl–LiBr–Li2SO4–Li2MoO4 quaternary system were studied by differential thermal analysis. The compositions and temperatures of minima in the ternary and quaternary systems were determined to be (31.2 mol % LiCl, 46.8 mol % LiBr, 22.0 mol % Li2SO4, 460°C) and (25.2 mol % LiCl, 30.2 mol % LiBr, 14.6 mol % Li2SO4, 30.0 mol % Li2MoO4, 411°C), respectively.  相似文献   

13.
The binary system KVO3–K2CrO4 and two ternary systems, LiBr–LiVO3–Li2CrO4 and KBr–KVO3–K2CrO4, were studied. In the ternary systems, the compositions and melting points of eutectic alloys were determined by differential thermal analysis: (49.0 mol % LiBr, 5.0 mol % LiVO3, 46.0 mol % Li2CrO4, 400°C) and (17.0 mol % KBr, 78.0 mol % KVO3, 5.0 mol % K2CrO4, 458°C), respectively.  相似文献   

14.
A visible-light sensitive bilayered photoanode of Fe–TiO2/Zn–Fe2O3 has been developed by spray pyrolytically depositing Zn–Fe2O3 layers onto predeposited Fe–TiO2 thin film on ITO substrate. Fe–TiO2/Zn–Fe2O3 photoelectrodes were characterized by XRD, Raman, AFM, UV-vis absorption spectroscopy. Photoelectrochemical properties of bilayered Fe–TiO2/Zn–Fe2O3 photoelectrode were studied by Mott–Schottky curves and I–V characteristics. Bilayered Fe–TiO2/Zn–Fe2O3 photoelectrode was observed to possess much higher separation efficiency of photogenerated charge carriers and could generate nine times better photocurrent density than pure Fe–TiO2. Solar to hydrogen conversion efficiency exhibited by this electrode was 0.77%.  相似文献   

15.
Ionic mobility and electrical conductivity of solid solutions with fluorite structure, obtained with solid-state approach in PbF2–SbF3 and PbF2–SnF2–SbF3 systems, are studied by 19F NMR and electrochemical impedance spectroscopy methods. The 19F NMR spectra parameters, types of ion motions in the fluoride sublattice, and the ionic conductivity magnitude are shown to be determined by the temperature and fluoride concentration in the solid solutions. The solid solution specific conductivity in the PbF2–SbF3 and PbF2–SnF2–SbF3 systems at 420–450 K is as high as ~10–2 S/cm, which allows accounting the solid solutions as a base for preparation of functional materials.  相似文献   

16.
The sequence of phases appearance during the formation of Bi1–xNdxFeO3 solid solutions in powder oxides mixtures of bismuth, neodymium, and iron has been determined. It has been shown that the closeness of the reaction mixture composition to that of the individual compound (BiFeO3 or NdFeO3) is essential for the realization of the series of phase transformations yielding solid solutions of multiferroics Bi1–xNdxFeO3 as the final product, due to the prevalence of various interphase contacts in the starting reaction zone.  相似文献   

17.
The solubility in the quaternary water–salt system Zr(SO4)2 · 4Н2О–Na2SO4–H2SO4–H2O at 25°C was studied. It was found that, in the system, there is crystallization of not only Na2SO4 and Zr(SO4)4 · 4H2O, but also sodium sulfate zirconates Na2Zr(SO4)2(OH)2 · 0.3H2O, Na4Zr(SO4)4 · 3H2O, and Na2Zr(SO4)2 · 3H2O and two new compounds, S1 and S2, which are presumably Na2ZrO(SO4)2 · 2H2O and Na2Zr2O2(SO4)3 · 6H2O.  相似文献   

18.
Radiation-induced degradation of the weakly and strongly 4-vinylpyridine basic ion exchange resins by gamma radiolysis was investigated in the presence of air and liquid water. This study is focused on evaluating the radiolytic gases (H2, CO, CO2 and CH4) and liquid products (water-solute TOC and NH4 +). The weakly basic resin yielded lower amounts of H2 and CO and higher amounts of CO2 than those of the strongly basic resin. Moreover, the strong basic resin tended to yield greater amounts of NH4 +. Resins were characterized by the FTIR spectroscopy technique and the results showed that the resins structures are relatively stable.  相似文献   

19.
The effect of calcination temperature (350–650?°C) on the structure and catalytic activity of Co3O4–CeO2 mixed oxides prepared by sol–gel method was investigated by XRD, H2-TPR, O2-TPD and formaldehyde (HCHO) oxidation. The Co3O4–CeO2 calcined at 450?°C (Co3O4–CeO2-450) exhibited the best performance, showing that the complete oxidation of HCHO was achieved at temperature as low as 80?°C. The results of characterizations revealed that the Co3O4–CeO2-450 had excellent catalytic activity due to the larger specific surface area, the best reducibility and more abundant surface active oxygen species.  相似文献   

20.
A phase diagram of the PbF2–SnF2 system has been studied by differential thermal analysis and X-ray powder diffraction. The system forms Pb1–хSnхF2 (х ≤ 0.33) solid solution and three compounds. Pb2SnF6 decomposes in solid state by a peritectoid reaction at 350°С; Pb3Sn2F10 and PbSnF4 melt by peritectic reactions at 565 and 380°С, respectively. The eutectic coordinates are 180°С, 90 mol % SnF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号