首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dispersion of solid particles in a turbulent liquid flow impinging on a centrebody through an axisymmetric sudden expansion was investigated numerically using a Eulerian–Lagrangian model. Detailed experimental measurements at the inlet were used to specify the inlet conditions for two-phase flow computations. The anisotropy of liquid turbulence was accounted for using a second-moment Reynold stress transport model. A recently developed stochastic–probabilistic model was used to enhance the computational efficiency of Lagrangian trajectory computations. Numerical results of the stochastic–probabilistic model using 650 particle trajectories were compared with those of the conventional stochastic discrete-delta-function model using 18 000 particle trajectories. In addition, results of the two models were compared with experimental measurements. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
The Lagrangian smoothed particle hydrodynamics (SPH) method is used to simulate shock waves in inviscid, supersonic (compressible) flow. It is shown for the first time that the fully Lagrangian SPH particle method, without auxiliary grid, can be used to simulate shock waves in compressible flow. The wall boundary condition is treated with ghost particles combined with a suitable repulsive potential function, whilst corners are treated by a novel ‘angle sweep’ technique. The method gives accurate predictions of the flow field and of the shock angle as compared with the analytical solution. The study shows that SPH is a good potential candidate to solve complex aerodynamic problems, including those involving rarefied flows, such as atmospheric re‐entry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Three-dimensional particle tracking velocimetry (3D-PTV) has been applied to particle-laden pipe flow at Reynolds number 10,300, based on the bulk velocity and the pipe diameter. The volume fraction of the inertial particles was equal to 1.4 × 10−5. Lagrangian velocity and acceleration statistics were determined both for tracers and for inertial particles with Stokes number equal to 2.3, based on the particle relaxation time and the viscous time scale. The decay of Lagrangian velocity and acceleration correlation functions was measured both for the fluid and for the dispersed phase at various radial positions. The decay of Lagrangian velocity correlations is faster for inertial particles than for flow tracers, whereas the decay of Lagrangian acceleration correlations is about 25% slower for inertial particles than for flow tracers. Further differences between inertial and tracer particles are found in velocity fluctuations evaluated for both positive and negative time lags. The asymmetry in time of velocity cross-correlations is more pronounced for inertial particles. Quadrant analysis revealed another difference still near the wall: ejection and sweep events are less frequent for inertial particles than for tracers.  相似文献   

4.
A Lagrangian–Eulerian model for the dispersion of solid particles in a two‐dimensional, incompressible, turbulent flow is reported and validated. Prediction of the continuous phase is done by solving an Eulerian model using a control‐volume finite element method (CVFEM). A Lagrangian model is also applied, using a Runge–Kutta method to obtain the particle trajectories. The effect of fluid turbulence upon particle dispersion is taken into consideration through a simple stochastic approach. Validation tests are performed by comparing predictions for both phases in a particle‐laden, plane mixing layer airflow with corresponding measurements formerly reported by other authors. Even though some limitations are detected in the calculation of particle dispersion, on the whole the validation results are rather successful. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Large-eddy simulations (LES) of particle-laden turbulent flows are presented in order to investigate the effects of particle response time on the dispersion patterns of a space developing flow with an obstruction, where solid particles are injected inside the wake of an obstacle [Vincont, J.Y., Simoens, S., Ayrault M., Wallace, J.M., 2000. Passive scalar dispersion in a turbulent boundary layer from a line source at the wall and downstream of an obstacle. J. Fluid Mech. 424, 127–167]. The numerical method is based on a fully explicit fractional step approach and finite-differences on Cartesian grids, using the immersed boundary method (IBM) to represent the existence of solid obstacles. Two different turbulence models have been tested, the classical Smagorinsky turbulence model and the filtered structure function model. The dispersed phase was modelled either by an Eulerian approach or a Lagrangian particle tracking scheme of solid particles with Stokes numbers in the range St = 0–25, assuming one-way coupling between the two phases. A very good agreement was observed between the Lagrangian and Eulerian approaches. The effect of particle size was found to significantly differentiate the dispersion pattern for the inhomogeneous flow over the obstacle. Although in homogeneous flows like particle-laden turbulent channels near-wall particle clustering increases monotonically with particle size, for the examined flow over an obstacle, preferential concentration effects were stronger only for an intermediate range of Stokes numbers.  相似文献   

6.
A direct numerical simulation was used along with a Lagrangian particle tracking technique to study particle motion in a horizontal, spatially developing turbulent boundary layer along an upper-wall (with terminal velocity directed away from the wall). The objective of the research was to study particle diffusion, dispersion, reflection, and mean velocity in the context of two parametric studies: one investigated the effect of the drift parameter (the ratio of particle terminal velocity to fluid friction velocity) for a fixed and finite particle inertia, and the second varied the drift parameter and particle inertia by the same amount (i.e. for a constant Froude number). A range of drift parameters from 10−4 to 100 were considered for both cases. The particles were injected into the simulation at a height of four wall units for several evenly distributed points across the span and a perfectly elastic wall collision was specified at one wall unit.Statistics collected along the particle trajectories demonstrated a transition in particle movement from one that is dominated by diffusion to one that is dominated by gravity. For small and intermediate sized particles (i.e. ones with outer Stokes numbers and drift parameters much less than unity) transverse diffusion away from the wall dominated particle motion. However, preferential concentration is seen near the wall for intermediate-sized particles due to inhomogeneous turbulence effects (turbophoresis), consistent with previous channel flow studies. Particle–wall collision statistics indicated that impact velocities tended to increase with increasing terminal velocity for small and moderate inertias, after which initial conditions become important. Finally, high relative velocity fluctuations (compared to terminal velocity) were found as particle inertia increased, and were well described with a quasi-one-dimensional fluctuation model.  相似文献   

7.
A particle–gridless hybrid method for the analysis of incompressible flows is presented. The numerical scheme consists of Lagrangian and Eulerian phases as in an arbitrary Lagrangian–Eulerian (ALE) method, where a new‐time physical property at an arbitrary position is determined by introducing an artificial velocity. For the Lagrangian calculation, the moving‐particle semi‐implicit (MPS) method is used. Diffusion and pressure gradient terms of the Navier–Stokes equation are calculated using the particle interaction models of the MPS method. As an incompressible condition, divergence of velocity is used while the particle number density is kept constant in the MPS method. For the Eulerian calculation, an accurate and stable convection scheme is developed. This convection scheme is based on a flow directional local grid so that it can be applied to multi‐dimensional convection problems easily. A two‐dimensional pure convection problem is calculated and a more accurate and stable solution is obtained compared with other schemes. The particle–gridless hybrid method is applied to the analysis of sloshing problems. The amplitude and period of sloshing are predicted accurately by the present method. The range of the occurrence of self‐induced sloshing predicted by the present method shows good agreement with the experimental data. Calculations have succeeded even for the higher injection velocity range, where the grid method fails to simulate. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
We propose a novel technique for three-dimensional three-component (3D3C) interfacial flow measurement. It is based on the particle streak velocimetry principle. A relatively long integration time of the camera is used for capturing the movement of tracer particles as streaks on the sensor. The velocity along these streaks is extracted by periodically changing the illumination using a known pattern. A dye with different absorption characteristics in two distinct wavelengths is used to color the fluid. The depth of particles relative to the fluid interface can then be computed from their intensities when illuminated with light sources at those two different wavelengths. Hence, from our approach, a bichromatic, periodical illumination together with an image processing routine for precisely extracting particle streak features is used for measuring 3D3C fluid flow with a single camera. The technique is applied to measuring turbulent Rayleigh–Bénard convection at the free air--water interface. Using Lagrangian statistics, we are able to demonstrate a clear transition from the Batchelor regime to the Richardson regime, both of which were postulated for isotropic turbulence. The relative error of the velocity extraction of our new technique was found to be below 0.5?%.  相似文献   

9.
In this work, the authors proposed a microscopic particle tracking system based on the previous work (Tien et al. in Exp Fluids 44(6):1015–1026, 2008). A three-pinhole plate, color-coded by color filters of different wavelengths, is utilized to create a triple exposure pattern on the image sensor plane for each particle, and each color channel of the color camera acts as an independent image sensor. This modification increases the particle image density of the original monochrome system by three times and eliminates the ambiguities caused by overlap of the triangle exposure patterns. A novel lighting method and a color separation algorithm are proposed to overcome the measurement errors due to crosstalk between color filters. A complete post-processing procedure, including a cascade correlation peak-finding algorithm to resolve overlap particles, a calibration-based method to calculate the depth location based on epipolar line search method, and a vision-based particle tracking algorithm is developed to identify, locate and track the Lagrangian motions of the tracer particles and reconstruct the flow field. A 10X infinity-corrected microscope and back-lighted by three individual high power color LEDs aligning to each of the pinhole is used to image the flow. The volume of imaging is 600 × 600 × 600 μm3. The experimental uncertainties of the system verified with experiments show that the location uncertainties are less than 0.10 and 0.08 μm for the in-plane and less than 0.82 μm for the out-of-plane components, respectively. The displacement uncertainties are 0.62 and 0.63 μm for the in-plane and 0.77 μm for the out-of-plane components, respectively. This technique is applied to measure a flow over a backward-facing micro-channel flow. The channel/step height is 600/250 μm. A steady flow with low particle density and an accelerating flow with high particle density are measured and compared to validate the flow field resolved from a two-frame tracking method. The Reynolds number in the current work varies from 0.033 to 0.825. A total of 20,592 vectors are reconstructed by time-averaged tracking of 156 image pairs from the steady flow case, and roughly 400 vectors per image pair are reconstructed by two-frame tracking from the accelerating flow case.  相似文献   

10.
Short particle residence time in entrained flow gasifiers demands the use of pulverized fuel particles to promote mass and heat transfer, resulting high fuel conversion rate. The pulverized biomass particles have a wide range of aspect ratios which can exhibit different dispersion behavior than that of spherical particles in hot product gas flows. This results in spatial and temporal variations in temperature distribution, the composition and the concentration of syngas and soot yield. One way to control the particle dispersion is to impart a swirling motion to the carrier gas phase. This paper investigates the dispersion behavior of biomass fuel particles in swirling flows. A two-phase particle image velocimetry technique was applied to simultaneously measure particle and gas phase velocities in turbulent isothermal flows. Post-processed PIV images showed that a poly-dispersed behavior of biomass particles with a range of particle size of 112–160 µm imposed a significant impact on the air flow pattern, causing air flow decelerated in a region of high particle concentration. Moreover, the velocity field, obtained from individually tracked biomass particles showed that the swirling motion of the carrier air flow gives arise a rapid spreading of the particles.  相似文献   

11.
12.
A numerical study is presented for the effect of wall roughness on the deposition of solid spherical particles in a fully developed turbulent channel flow based on large eddy simulation combined with a Lagrangian particle-tracking scheme. The interest is focused on particles with response times in wall units in the range of 2.5 ≤ τp+ ≤ 600 depositing onto a vertical rough surface consisting of two-dimensional transverse square bars separated by a rectangular cavity. Predictions of particle deposition rates are obtained for several values of the cavity width to roughness element height ratio and particle response time. It is shown that the accumulation of particles in the near wall region and their preferential concentration in flow areas of low streamwise fluid velocity that occur in turbulent flows at flat channels are significantly affected by the roughness elements. Particle deposition onto the rough wall is considerably increased, exhibiting a subtle dependence on the particle inertia and the spacing between the bars. The observed augmentation of deposition coefficient can be attributed to the flow modifications induced by the roughness elements and to the inertial impaction of particles onto the frontal deposition area of the protruding square bars.  相似文献   

13.
Erosion is one of the major problems in many industrial processes, and in particular, in heat exchangers. The effects of flow velocity and sand particle size on the rate of erosion in a typical shell‐and‐tube heat exchanger were investigated numerically using the Lagrangian particle‐tracking method. Erosion and penetration rates were obtained for sand particles of diameters ranging from 10 to 500 µm and for inlet flow velocities ranging from 0.197 to 2.95 m/s. A flow visualization experiment was conducted with the objective of verifying the accuracy of the continuous phase calculation procedure. Comparison with available experimental data of penetration rates was also conducted. These comparisons resulted in a good agreement. The results show that the location and number of eroded tubes depend mainly on the particle size and velocity magnitude at the header inlet. The rate of erosion depends exponentially on the velocity. The particle size shows negligible effect on the erosion rate at high velocity values and the large‐size particles show less erosion rates compared to the small‐size particles at low values of inlet flow velocities. The results indicated that the erosion and penetration rates are insignificant at the lower end of the velocity range. However, these rates were found to increase continuously with the increase of the inlet flow velocity for all particle sizes. The particle size creating the highest erosion rate was found to depend on the flow velocity range. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A series of numerical simulations were performed to investigate the distribution and deposition properties of particles in turbulent flows bounded by permeable walls using the Large Eddy Simulation (LES) with a Lagrangian trajectory approach. The wall permeation speeds were taken from 10−4 to 10−2 of the bulk velocity. The directions of the permeation speed were the same at both walls, and they were inward on one wall but outward on the other wall to reserve the fluid mass. Particles with Stokes number (respecting viscous time scale) around 0.1, 1 and 10 were released in the fully developed turbulent channel flow. The particle–particle interaction and the retroaction from particles to the fluid were neglected. The fluid-phase turbulence statistical properties and particle's transport characteristics by vortexes were then analyzed in details. If the wall permeation exists, the turbulence intensities will be depressed close to the outward permeable wall but increased near the inward permeable wall. Not influenced by the wall permeation, the suspended particles with St+ ∼O(1) tend to accumulate in the less vortical zones away from the wall, while those particles in the flow regions near the outward permeable wall will distribute disregarding of the vorticity. The turbulence structures near the outward permeable wall are found to exert promotional effects on the particle deposition rate, but such effects are different for particles with various Stokes number. A distribution tendency of streamwise streaks for the deposited particles is also found on the wall imposed by the high outward permeation speed and the clustering deposition pattern is more obvious with increasing particle Stokes number.  相似文献   

15.
A dilute, particle-laden flow in a square duct with a 90° bend is modelled using a RANS approach, coupled to a second-moment turbulence closure, together with a Lagrangian particle tracking technique, with particle dispersion modelled using a stochastic approach that ensures turbulence anisotropy. Detailed predictions of mean and fluctuating fluid and particle velocities are validated through comparisons of predictions with experimental measurements made for gas–solid flows in a vertical-to-horizontal flow configuration. Reasonable agreement between predicted first and second moments and data is found for both phases, with the consistent application of anisotropic and three-dimensional modelling approaches resulting in predictions that compare favourably with those of other authors, and which provide fluctuating particle velocities in acceptable agreement with data.  相似文献   

16.
In gas–solid flows, particle–particle interaction (typical, particle collision) is highly significant, despite the small particles fractional volume. Widely distributed polydisperse particle population is a typical characteristic during dynamic evolution of particles (e.g., agglomeration and fragmentation) in spite of their initial monodisperse particle distribution. The conventional direct simulation Monte Carlo (DSMC) method for particle collision tracks equally weighted simulation particles, which results in high statistical noise for particle fields if there are insufficient simulation particles in less-populated regions. In this study, a new differentially weighted DSMC (DW-DSMC) method for collisions of particles with different number weight is proposed within the framework of the general Eulerian–Lagrangian models for hydrodynamics. Three schemes (mass, momentum and energy conservation) were developed to restore the numbers of simulation particle while keeping total mass, momentum or energy of the whole system unchanged respectively. A limiting case of high-inertia particle flow was numerically simulated to validate the DW-DSMC method in terms of computational precision and efficiency. The momentum conservation scheme which leads to little fluctuation around the mass and energy of the whole system performed best. Improved resolution in particle fields and dynamic behavior could be attained simultaneously using DW-DSMC, compared with the equally weighted DSMC. Meanwhile, computational cost can be largely reduced in contrast with direct numerical simulation.  相似文献   

17.
Governing equations for a two‐phase 3D helical pipe flow of a non‐Newtonian fluid with large particles are derived in an orthogonal helical coordinate system. The Lagrangian approach is utilized to model solid particle trajectories. The interaction between solid particles and the fluid that carries them is accounted for by a source term in the momentum equation for the fluid. The force‐coupling method (FCM), developed by M.R. Maxey and his group, is adopted; in this method the momentum source term is no longer a Dirac delta function but is spread on a numerical mesh by using a finite‐sized envelop with a spherical Gaussian distribution. The influence of inter‐particle and particle–wall collisions is also taken into account. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
In this work we study deposition of particles and droplets in non-rotating swirled turbulent pipe flow. We aim at verifying whether the capability of swirl to enhance particle separation from the core flow and the capability of turbulence to efficiently trap particles at the wall can co-exist to optimize collection efficiency in axial separators. We perform an Eulerian–Lagrangian study based on Direct Numerical Simulation (DNS) of turbulence, considering the effect of different swirl intensities on turbulence structures and on particle transfer at varying particle inertia. We show that, for suitably-chosen flow parameters, swirl may be superimposed to the base flow without disrupting near-wall turbulent structures and their regeneration mechanisms. We also quantify collection efficiency demonstrating for the first time that an optimal synergy between swirl and wall turbulence can be identified to promote separation of particles and droplets.  相似文献   

19.
The lattice Boltzmann method (LBM) is a useful technique for simulating multiphase flows and modeling complex physics. Specifically, we use LBM combined with a direct-forcing (DF) immersed boundary (IB) method to simulate fluid–particle interactions in two-phase particulate flows. Two grids are used in the simulation: a fixed uniform Eulerian grid for the fluid phase and a Lagrangian grid that is attached to and moves with the immersed particles. Forces are calculated at each Lagrangian point. To exchange numerical information between the two grids, discrete delta functions are used. The resulting DF IB-LBM approach is then successfully applied to a variety of reference flows, namely the sedimentation of one and two circular particles in a vertical channel, the sedimentation of one or two spheres in an enclosure, and a neutrally buoyant prolate spheroid in a Couette flow. This last application proves that the developed approach can be used also for non-spherical particles. The three forcing schemes and the different factors affecting the simulation (added mass effect, corrected radius) are also discussed.  相似文献   

20.
Solar cracking of methane is considered to be an attractive option due to its CO2 free hydrogen production process. Carbon particle deposition on the reactor window, walls and exit is a major obstacle to achieve continuous operation of methane cracking solar reactors. As a solution to this problem a novel “aero-shielded solar cyclone reactor” was created. In this present study the prediction of particle deposition at various locations for the aero-shielded reactor is numerically investigated by a Lagrangian particle dispersion model. A detailed three dimensional computational fluid dynamic (CFD) analysis for carbon deposition at the reactor window, walls and exit is presented using a Discrete Phase Model (DPM). The flow field is based on a RNG k–ε model and species transport with methane as the main flow and argon/ hydrogen as window and wall screening fluid. Flow behavior and particle deposition have been observed with the variation of main flow rates from 10–20 L/min and with carbon particle mass flow rate of 7 × 10−6 and 1.75 × 10−5 kg/s. In this study the window and wall screening flow rates have been considered to be 1 L/min and 10 L/min by employing either argon or hydrogen. Also, to study the effect of particle size simulations have also been carried out (i) with a variation of particle diameter with a size distribution of 0.5–234 μm and (ii) by taking 40 μm mono sized particles which is the mean value for the considered size distribution. Results show that by appropriately selecting the above parameters, the concept of the aero-shielded reactor can be an attractive option to resolve the problem of carbon deposition at the window, walls and exit of the reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号