首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is intended to demonstrate that there is no need to revise the existing theory of the transport properties of disordered conductors in the so-called weak localization regime. In particular, we demonstrate explicitly that recent attempts to justify theoretically that the dephasing rate (extracted from the magnetoresistance) remains finite at zero temperature are based on a profoundly incorrect calculation. This demonstration is based on a straightforward evaluation of the effect of the electron-electron interaction on the weak localization correction to the conductivity of disordered metals. Using well controlled perturbation theory with the inverse conductance g as the small parameter, we show that this effect consists of two contributions. The first contribution comes from the processes with energy transfer smaller than the temperature, and is responsible for setting the energy scale for the magnetoresistance. The second contribution originates from the virtual processes with energy transfer larger than the temperature. It is shown that the latter processes have nothing to do with the dephasing, but rather manifest the second-order (in 1/g) correction to the conductance. This correction is calculated for the first time. The paper also contains a brief review of the existing experiments on the dephasing of electrons in disordered conductors and an extended qualitative discussion of the quantum corrections to the conductivity and to the density of electronic states in the weak localization regime.  相似文献   

2.
A theory of the NMR signal dephasing due to the presence of tissue-specific magnetic field inhomogeneities is developed for a two-compartment model. Randomly distributed magnetized objects of finite size embedded in a given media are modeled by ellipsoids of revolution (prolate and oblate spheroids). The model can be applied for describing blood vessels in a tissue, red blood cells in the blood, marrow within trabecular bones, etc. The time dependence of the dephasing function connected with the spins inside of the objects, s(i), is shown to be expressed by Fresnel functions and creates a powder-type signal in the frequency domain. The short-time regime of the dephasing function for spins outside the objects, s(e), is always characterized by Gaussian time dependence, s(e) approximately exp[-zeta(k)(t/tc)2], with zeta being a volume fraction occupied by the objects, t(c) being a characteristic dephasing time, and the coefficient k depending on the ellipsoid's shape through the aspect ratio of its axes (a/c). The long-time asymptotic behavior of s(e) is always "quasispherical"-linear exponential in time, s(e) approximately exp(-zetaCt/tc), with the same "spherical" decay rate for any ellipsoidal shape. For long prolate spheroids (a/c)<1, there exists an intermediate characteristic regime with a linear exponential time behavior and an aspect-ratio-dependent decay rate smaller than (zetaC/tc).  相似文献   

3.
A theory of the dephasing rate of quasi-2D free excitons due to acoustic phonon interaction at low exciton densities is presented. Both deformation potential and piezoelectric couplings are considered for the exciton–phonon interaction in quantum wells. Using the derived interaction Hamiltonian obtained recently by us, exciton linewidth and dephasing rate are calculated as a function of the exciton density, exciton temperature, exciton momentum and lattice temperature.  相似文献   

4.
《Physics Reports》2001,343(6):463-538
This is a review of the phase coherent transmission through interacting mesoscopic conductors. As a paradigm we study the transmission amplitude and the dephasing rate for electron transport through a quantum dot in the Coulomb blockade regime. We summarize experimental and theoretical work devoted to the phase of the transmission amplitude. It is shown that the evolution of the transmission phase may be dominated by non-universal features in the short-time dynamics of the quantum dot. The controlled dephasing in Coulomb-coupled conductors is investigated. Examples comprise a single or multiple quantum dots in close vicinity to a quantum point contact. The current through the quantum point contact “measures” the state of the dots and causes dephasing. The dephasing rate is derived using widely different theoretical approaches. The Coulomb coupling between mesoscopic conductors may prove useful for future work on electron coherence and quantum computing.  相似文献   

5.
PurposeTissue microstructure can influence quantitative magnetic resonance imaging such as relaxation rate measurements. Consequently, relaxation rate mapping can provide useful information on tissue microstructure. In this work, the theory on relaxation mechanisms of the change of the relaxation rate ∆R2 in the presence of spherical susceptibility sources in a spin bearing medium is validated in simulations and phantom experiments for the coexistence of two species of susceptibility sources.MethodsThe influence of coexisting spherical perturbers with magnetic susceptibilitys of different signs was evaluated in Monte Carlo simulations including diffusion effects in the surrounding medium. Simulations were compared with relaxometry measurements at 1.5 Tesla and at 3 Tesla. The phantoms used to validate the simulations were built from agarose gel containing calcium carbonate and tungsten carbide particles of different size and concentration.ResultsThe Monte Carlo simulations showed, that the change in relaxation rate only depends on the overall amount of susceptibility producing structures in the simulation volume and no difference was found, if mixtures of positive and negative particles were simulated. Phantom measurements within the static dephasing regime showed linear additivity of the effects from positive and negative susceptibility sources that were present within the same voxel.ConclusionsIn summary, both the simulations and the phantom measurements showed that changes in the relaxation rate ΔR2 add up linearly for spherical particles with different susceptibilities within the same voxel if the conditions for the static dephasing regime are fulfilled. If particles with different susceptibilities have both different sizes and violate the conditions of the static dephasing regime, effects on relaxation rates might no longer be linear.  相似文献   

6.
Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames. The initial frequency-spread dephasing rate of the Raman coherence induced by the ultrafast (∼85 fs) Stokes and pump beams is used as a measure of gas-phase temperature. This initial frequency-spread dephasing rate of the Raman coherence is completely independent of collisions and depends only on the frequency spread of the Raman transitions at different temperatures. A simple theoretical model based on the assumption of impulsive excitation of Raman coherence is used to extract temperatures from time-resolved fs-CARS experimental signals. The extracted temperatures from fs-CARS signals are in excellent agreement with the theoretical temperatures calculated from an adiabatic equilibrium calculation. The estimated absolute accuracy and the precision of the measurement technique are found to be ±40 K and ±50 K, respectively, over the temperature range 1500-2500 K.  相似文献   

7.
陈翔  米贤武 《光子学报》2014,40(5):746-752
采用非相干泵浦、受激辐射和纯退相干的量子主方程研究了量子点腔耦合系统,得出腔与量子点发射光谱解析解.理论分析显示,在非谐振耦合系统中纯退相干能使腔发射谱产生明显的移位效应,从而可以解释“非谐振耦合腔有效发射”效应.为了进一步研究纯退相干在量子点腔耦合系统上的应用,引入了系统有效耦合率和单光子源效率,并通过比较有效耦合率与腔耗散定义出好腔与坏腔机制.选取两组依据实验数据作为参量,在共振与失谐时研究了纯退相干对系统有效耦合率和单光子源效率的影响.结果表明:纯退相干可提高失谐系统有效耦合率与单光子源效率,从而可能使坏腔转变为好腔|两组参量中有较大耦合效率一组在一定范围内满足好腔机制,其单光子源效率明显优于另一组.在非谐振耦合系统比较了好腔机制与坏腔机制的激光,好腔机制是实现单量子点激光的必要条件|由于非谐振耦合系统Fano因子无最大值出现,从而该系统可能无激光阈值.  相似文献   

8.
Future wakefield accelerator (LWFA) experiments are expected to operate in the short pulse resonant regime and employ some form of laser guiding, such as a preformed plasma channel. Performance of an LWFA may be characterized by the maximum axial electric field Em, the dephasing length Ld, and the corresponding dephasing limited energy gain Wd. Dephasing is characterized by the normalized phase slippage rate Δβp, of the wakefield relative to a particle moving at the velocity of light. This paper presents analytical models for all of these quantities and compares them with results from simulations of channel-guided LWFAs. The simulations generally confirm the scaling predicted by the analytical models, agreeing within a few percent in most cases. The results show that with the proper choice of laser and channel parameters, the pulse will propagate at a nearly constant spot size rM over many Rayleigh lengths and generate large accelerating electric fields. The spot size correction to the slippage rate is shown to be important in the LWFA regime, whereas Δβp, is essentially independent of laser intensity. An example is presented of a 25-TW, 100-fs laser pulse that produces a dephasing limited energy gain in excess of 1 GeV  相似文献   

9.
We study the magnetotransport of a GaAs/AlGaAs quantum well with self-assembled InAs quantum dots. Negative magnetoresistance is observed at low field and analysed by weak localization theory. The temperature dependence of the extracted dephasing rate is linear, which shows that the inelastic electron-electron scattering processes with small energy transfer are the dominant contribution in breaking the electron phase coherence. The results are compared with those of a reference sample that contains no quantum dots.  相似文献   

10.
Time-domain coherent anti-Stokes Raman scattering experiments have been carried out by probing vibrational and pure rotational lines of nitrogen in the Doppler broadened regime. The theoretical analysis of the transient responses outlines the role of the geometrical effects. For pure rotational CARS, it is shown that the main contribution to the dephasing of the Raman coherence results from the change in direction between the pump and anti-Stokes wave vectors whereas the difference between the modulus of these two wave vectors accounts for dephasing in vibrational CARS. Furthermore, we demonstrate that the range of operation of time-domain CARS velocimetry is extended by probing pure rotational lines. The predictions are validated by experiments which are performed both in a static gas cell and in a Mach 10 supersonic flow. Received: 30 March 2000 / Revised version: 9 June 2000 / Published online: 13 September 2000  相似文献   

11.
A new analytical Liouville-space representation of the time-propagator under magic angle spinning (MAS) is introduced using the formalized quantum Floquet theory. This approach has the advantage that it is applicable to the analysis of any type of NMR experiment where MAS is combined with multiple-pulse excitation. General relationships describing the spectral parameters in multiple-quantum (MQ) MAS spectra are derived in this representation. Their use is illustrated with an application to double-quantum (DQ) NMR spectra of dipolar-coupled multi-spin systems. Corresponding to the separation of the MAS time-propagator into a rotor modulated and a dephasing component, two distinct mechanisms for DQ excitation are identified. One of them exploits the rotor-modulated component to excite DQ coherences through dipolar-recoupling techniques, which are familiar for spin pairs. Analytical expressions of the integral intensities and linewidths in the resulting DQ sideband pattern are derived in the form of power series expansions of the inverse rotor frequency, of which coefficients depend on structural parameters. In a multi-spin system they can most reliably be extracted in the fast spinning regime. The other mechanism exploits the dephasing component, which is characteristic to multi-spin systems only. This is shown to give rise to DQ coherences by free evolution at full rotor periods. The possibility to exploit it for selective excitation of higher order MQ coherences is discussed. In either case, the dephasing component also leads to residual broadening. The main results of the theoretical developments are demonstrated experimentally on adamantane.  相似文献   

12.
13.
A long, relativistic particle beam propagating in an overdense plasma is subject to the self-modulation instability. This instability is analyzed and the growth rate is calculated, including the phase relation. The phase velocity of the wake is shown to be significantly less than the beam velocity. These results indicate that the energy gain of a plasma accelerator driven by a self-modulated beam will be severely limited by dephasing. In the long-beam, strongly coupled regime, dephasing is reached in a homogeneous plasma in less than four e foldings, independent of beam-plasma parameters.  相似文献   

14.
A key prediction of the SO(5) theory is the antiferromagnetic vortex state. Recent neutron scattering experiment on LSCO superconductors revealed enhanced antiferromagnetic order in the vortex state. Here we review theoretical progress since the original proposal and present a theory of static and dynamic antiferromanetic vortices in LSCO superconductors. It is shown that the antiferromagnetic region induced by the vortices can be greater than the coherence length, due to the light effective mass of the dynamic antiferromagnetic fluctuations at optimal doping, and close proximity to the antiferromagentic state in the underdoped regime. Systematic experiments are proposed to unambiguously determine that the field induced magnetic scattering originates from the vortices and not from the bulk.  相似文献   

15.
We present a theory of dynamical control by modulation for optimal decoherence reduction. The theory is based on the non-Markovian Euler-Lagrange equation for the energy-constrained field that minimizes the average dephasing rate of a qubit for any given dephasing spectrum.  相似文献   

16.
We have investigated non-markovian dephasing by using time-resolved and spectrally resolved four-wave mixing measurements in a layered semiconductor GaSe. When the time interval between the first and second excitation pulses is increased, photon echo spectra exhibit narrowing only in a regime of a few picoseconds. In the initial dephasing of these signals, fast damping is observed. The narrowing of the spectrally resolved signal is consistent with the Fourier transformation of the time-resolved signals. Spectral narrowing is crucial evidence of the transition from non-markovian to markovian dynamics. By comparing experimental data with calculation results based on the non-markovian theory, we have found that the correlation time of the exciton-phonon interaction is 1.1 ps.  相似文献   

17.
Localization and dephasing of conduction electrons in a low carrier density ferromagnet due to scattering on magnetic fluctuations is considered. We claim the existence of the “mobility edge”, which separates the states with fast diffusion and the states with slow diffusion; the latter is determined by the dephasing time. When the “mobility edge” crosses the Fermi energy a large and sharp change of conductivity is observed. The theory provides an explanation for the observed temperature dependence of conductivity in ferromagnetic semiconductors and manganite pyrochlores. Received 17 January 1999 and Received in final form 12 March 1999  相似文献   

18.
The dynamics of the reduced density matrix of the driven dissipative two-state system is studied for a general diagonal/off-diagonal initial state. We derive exact formal series expressions for the populations and coherences and show that they can be cast into the form of coupled nonconvolutive exact master equations and integral relations. We show that neither the asymptotic distributions, nor the transition temperature between coherent and incoherent motion, nor the dephasing rate and relaxation rate towards the equilibrium state depend on the particular initial state chosen. However, in the underdamped regime, effects of the particular initial preparation, e.g. in an off-diagonal state of the density matrix, strongly affect the transient dynamics. We find that an appropriately tuned external ac-field can slow down decoherence and thus allow preparation effects to persist for longer times than in the absence of driving. Received 23 October 1998 and Received in final form 26 February 1999  相似文献   

19.
An electronic Mach-Zehnder interferometer is used in the integer quantum Hall regime at a filling factor 2 to study the dephasing of the interferences. This is found to be induced by the electrical noise existing in the edge states capacitively coupled to each other. Electrical shot noise created in one channel leads to phase randomization in the other, which destroys the interference pattern. These findings are extended to the dephasing induced by thermal noise instead of shot noise: it explains the underlying mechanism responsible for the finite temperature coherence time tau_{phi}(T) of the edge states at filling factor 2, measured in a recent experiment. Finally, we present here a theory of the dephasing based on Gaussian noise, which is found to be in excellent agreement with our experimental results.  相似文献   

20.
The dephasing of particle plasmons is investigated using light-scattering spectroscopy on individual gold nanoparticles. We find a drastic reduction of the plasmon dephasing rate in nanorods as compared to small nanospheres due to a suppression of interband damping. The rods studied here also show very little radiation damping, due to their small volumes. These findings imply large local-field enhancement factors and relatively high light-scattering efficiencies, making metal nanorods extremely interesting for optical applications. Comparison with theory shows that pure dephasing and interface damping give negligible contributions to the total plasmon dephasing rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号