首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
本文研究了稀土元素对Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金的微观结构和电化学性能的影响。结果表明,Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce,Nd,Gd;x=0.01)合金均有V基固溶体相和C14型Laves相两相组成。合金中两相的晶格参数随加入稀土元素的不同而发生变化。稀土元素部分取代可改善合金电极的活化性能。然而,对合金电极的其他性能影响因元素种类不同而各异。Ce取代增大了合金电极的最大放电容量,Nd元素可以有效改善合金的高倍率放电性能。工作温度对合金电极的放电容量影响较大,Nd和Gd在333 K最大放电容量可达426和465 mAh.g-1。过高的温度使其循环容量衰减加剧。  相似文献   

2.
研究了5种稀土元素部分取代V对Ti0.26Zr0.07V0..24Mn0.1Ni0.33合金的微观结构和电化学性能的影响。结果表明,Ti0.26Zr0.07V0.24Mn0.1Ni0.33和Ti0.26Zr0.07V0.24-xMn0.1Ni0.33REx(x=0.005;RE=La,Ce,Nd,Ho,Y)均由体心立方结构的钒基固溶体相和六方结构的C14 Laves相组成。在合金中加入稀土元素,会使合金中两相的晶胞体积同时增大。稀土元素部分取代V均改善了合金电极的活化性能。La和Nd元素取代后,合金电极的最大放电容量明显增加,而Ce的取代提高了合金电极的循环稳定性。Ce,Nd,Ho,Y均改善了合金电极的倍率放电性能。合金电极在高温状态下表现出了良好的放电性能,其中Nd在333 K时放电容量可达550.4 mAh·g-1。稀土元素对荷电保持率的影响各异。  相似文献   

3.
研究了5种稀土元素部分取代V对Ti0.26Zr0.07V0..24Mn0.1Ni0.33合金的微观结构和电化学性能的影响。结果表明,Ti0.26Zr0.07V0.24Mn0.1Ni0.33和Ti0.26Zr0.07V0.24-xMn0.1Ni0.33RExx=0.005;RE=La,Ce,Nd,Ho,Y)均由体心立方结构的钒基固溶体相和六方结构的C14Laves相组成。在合金中加入稀土元素,会使合金中两相的晶胞体积同时增大。稀土元素部分取代V均改善了合金电极的活化性能。La和Nd元素取代后,合金电极的最大放电容量明显增加,而Ce的取代提高了合金电极的循环稳定性。Ce,Nd,Ho,Y均改善了合金电极的倍率放电性能。合金电极在高温状态下表现出了良好的放电性能,其中Nd在333K时放电容量可达550.4mAh·g-1。稀土元素对荷电保持率的影响各异。  相似文献   

4.
稀土对Ti-Zr-V-Cr-Ni合金微观结构和电化学性能的影响   总被引:2,自引:1,他引:2  
研究了稀土对Ti0.17Zr0.08V0.35Cr0.1Ni0.3合金的微观结构和电化学性能的影响。结果表明,Ti0.17Zr0.08V0.35Cr0.1Ni0.3和Ti0.17Zr0.08V0.35Cr0.1Ni0.3RE0.05(RE分别代表La,Ce,Pr,Nd和混合稀土)合金均由主相为体心立方结构的钒基固溶体相和少量六方结构的C14 Laves相组成;在合金中加入稀土元素,同时增大合金中两相的晶胞体积。镧和其他金属元素结合形成新相分布于合金中。添加稀土元素可以改善合金电极的活化性能。镧的添加降低了合金电极在60 mA.g-1下的最大放电容量,但对其理论放电容量几乎没有影响;合金的放电容量对温度的变化比较敏感,过高的温度使其容量发生衰减,含稀土元素的合金电极在323 K温度下放电容量达到最大值。稀土对合金电极的荷电保持率产生不利影响,镧、钕和混合稀土的添加能够改善合金电极的倍率放电性能。  相似文献   

5.
本文通过XRD、SEM、EDS研究了Ti0.4Zr0.1V1.1Mn0.5Cr0.1Nix(x=0,0.2,0.4,0.6,0.8)合金的相结构和电化学性能.该合金系由BCC结构的V基固溶体主相和六方结构的C14 Laves第二相组成,Ni能够促进第二相的生成,Ni含量的增加导致了各相中的化学组成和晶格参数的变化,并通过电化学方法研究了Ni含量对Ti0.4Zr0.1V1.1Mn0.5Cr0.1合金电极的最大放电容量、自放电性能、高倍率放电性能、循环稳定性能等的影响.  相似文献   

6.
采用磁悬浮感应熔炼方法制备了V2.1TiNi0.4Zr0.06Cux(x=0-0.12)储氢合金,经XRD、SEM、EDS和电化学测试等系统研究了Cu添加量对合金微结构及电化学性能的影响.结果表明,所有合金均由V基固溶体主相和C14型Laves第二相组成,且第二相沿主相晶界形成三维网状分布;合金主相和第二相的晶胞体积均随着Cu含量x的增加而增大.电化学性能测试表明,添加适量(x=0.03-0.06)的Cu可以提高合金的最大放电容量,并对活化性能基本没有影响:而过高的Cu添加量(x≥0.09)会降低合金的放电容量.此外,添加Cu可使合金的高倍率放电性能得到明显改善,充放电循环稳定性有所提高.在所研究的合金样品中,V2.1TiNi0.4Zr0.06Cu0.03合金具有最佳的综合性能.  相似文献   

7.
采用磁悬浮感应熔炼方法制备了V2.1TiNi0.4Zr0.06Cux (x=0-0.12)储氢合金, 经XRD、SEM、EDS和电化学测试等系统研究了Cu添加量对合金微结构及电化学性能的影响. 结果表明, 所有合金均由V基固溶体主相和C14型Laves第二相组成, 且第二相沿主相晶界形成三维网状分布; 合金主相和第二相的晶胞体积均随着Cu含量x的增加而增大. 电化学性能测试表明, 添加适量(x=0.03-0.06)的Cu可以提高合金的最大放电容量, 并对活化性能基本没有影响; 而过高的Cu添加量(x≥0.09)会降低合金的放电容量. 此外, 添加Cu可使合金的高倍率放电性能得到明显改善, 充放电循环稳定性有所提高. 在所研究的合金样品中, V2.1TiNi0.4Zr0.06Cu0.03合金具有最佳的综合性能.  相似文献   

8.
通过电弧熔炼制备了无镁La-Y-Ni系A2B7型Y0.7La0.3Ni3.25Al0.1Mn0.15合金, 并在高纯0.2 MPa Ar气氛下分别对合金进行850~1050 ℃真空24 h退火热处理. 通过X射线衍射(XRD)、 中子衍射(ND)、 扫描电子显微镜/能量分散谱(SEM/EDS)和电化学测试方法研究了退火温度对合金结构和性能的影响. 结构分析表明, 铸态合金由CaCu5, Ce5Co19, Gd2Co7, Ce2Ni7多相构成, 随着退火温度升高, CaCu5, Ce5Co19, Gd2Co7相逐步减少直至消失, Ce2Ni7主相相丰度逐步增加. 900~950 ℃退火时, 合金为单相Ce2Ni7结构. 退火温度继续升高, 合金中出现少量PuNi3相. 合金电极的最大放电容量随着退火温度的升高先增加后降低. 从铸态的307.6 mA·h/g增加到900 ℃退火时的最大值393.1 mA·h/g, 后又降到1050 ℃退火时的366.4 mA·h/g. 合金电极的电化学循环稳定性随退火温度的升高而升高, 循环100次后电化学容量保持率(S100)从铸态的66%上升到1050 ℃退火后的88.5%, 900~950 ℃退火时, 合金电极具有较好的综合电化学性能.  相似文献   

9.
Ti0.26Zr0.07V0.24Mn0.1Ni0.33Bx(x=0~0.10)系列合金均有V基固溶体相和C14型Laves相两相组成。添加B可提高Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金的放电容量,Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.1合金电极在60 mA·g-1电流放电时的放电容量达到476.7 mAh·g-1。B的添加不同程度地降低了合金的高倍率放电性能,使合金电极表面上电化学反应的电荷转移电阻(R ct)显著增加,交换电流密度(I0)显著降低。添加B可显著改善Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金电极的高温放电性能,Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.025合金电极在343 K高温下其放电容量达到525.6 mAh·g-1。  相似文献   

10.
Ti0.26Zr0.07V0.24Mn0.1Ni0.33Bx(x=0~0.10)系列合金均有V基固溶体相和C14型Laves相两相组成。添加B可提高Ti0.26Zr0.07V0.24 Mn0.1Ni0.33合金的放电容量, Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.1合金电极在60 mA·g-1电流放电时的放电容量达到476.7 mAh·g-1.B的添加不同程度地降低了合金的高倍率放电性能, 使合金电极表面上电化学反应的电荷转移电阻(Rct)显着增加, 交换电流密度(I0)显着降低。添加B可显着改善Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金电极的高温放电性能, Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.025合金电极在343 K高温下其放电容量达到525.6 mAh·g-1.  相似文献   

11.
文明芬  翟玉春  佟敏  陈廉  郑华  马荣俊 《电化学》2001,7(3):288-293
对比研究了熔体旋淬和常规熔铸合金Zr0 .9Ti0 .1(Ni,Co ,Mn ,V) 2 .1的微结构和电化学性能 .XRD分析表明 :熔体旋淬合金在退火前后的晶体结构和铸态合金一样 ,均为面心立方结构 ,由LaveC15相组成 ;并且随旋淬速度的增加 ,旋淬合金中的非晶成分越多 .电化学测试表明 :旋淬合金有较好的活化性能 ,但其最大放电容量较低 ,小于 2 80mAh/g ;而退火后的旋淬合金需经 30次循环才能完全活化 ,其最大放电容量皆为 34 0mAh/g左右 ,高于铸态合金和退火前的旋淬合金 ;在电流密度为 30 0mA/g下进行充放电循环 ,发现退火后的旋淬合金循环稳定性明显高于铸态合金电极 ,并且随旋淬速度的增加 ,循环稳定性越好 ,经过 80 0次循环后 ,退火后的 4 0m/s合金容量保持率高达 85 % ,容量衰减率只有 6.9%  相似文献   

12.
稀土元素对镍基合金刷镀层沉积速率的作用   总被引:1,自引:0,他引:1  
研究了La ,Ce ,Sm及Er对电刷镀Ni P ,Ni Cu P和Ni Cu P MoS2 3种镀层沉积速率的影响。4种稀土都能提高镀层的沉积速率 ,其中Sm对Ni P和Ni Cu P镀层沉积速率的提高效果最为明显。稀土提高镀层沉积速率均存在一最佳的加入量。在一定的刷镀电压范围内 ,稀土加速Ni P ,Ni Cu P镀层沉积速率的作用效果及程度没有变化。分析了稀土提高镀层沉积速率的作用机制。  相似文献   

13.
李嵩  季世军  孙俊才 《电化学》2004,10(1):81-86
研究了AB2型Laves相贮氢电极合金ZrCr0.4Mn0.2V0.1Co0.1Ni1.2在不同温度下的放电容量、活化、高倍率和自放电等电化学性能.实验表明:25℃下,合金电极经13次循环后其最大放电容量为336mAh/g,在70℃下,仅需4次循环就达到298mAh/g;该合金在70℃,300mA/g电流下的高倍率放电性能比25℃时提高了约16%,但自放电性能却从3%/d下降到17%/d,虽然温度升高,合金的循环性能有所下降,但还是相当稳定的.这主要是因为循环过程中合金表面形成的氧化膜阻碍了合金元素进一步溶解造成的.  相似文献   

14.
Mg-based hydrogen storage alloys MgNi, Mg0.9Ti0.1Ni, and Mg0.9Ti0.06Zr0.04Ni were successfully prepared by means of mechanical alloying (MA). The structure and the electrochemical characteristics of these Mg-based materials were studied. The X-ray diffraction (XRD) result shows that the main phases of the alloys exhibit amorphous structure. The scanning electron microscopy (SEM) photograph shows that the particle size of Ti and Zr substituted alloys was about 2-4 μm in diameter. The cycle lives of the alloys were prolonged by adding Ti and Zr. After 50 charge-discharge cycles, the discharge capacity of Mg0.9Ti0.06Zr0.04Ni was 91.74% higher than that of MgNi alloy and 37.96% higher than that of Mg0.9Ti0.1Ni alloy. The main reason for the electrode capacity decay is the formation of Mg(OH)2 (product of Mg corrosion) at the surface of alloy. The potentiodynamic polarization result indicates that Ti and Zr doping improves the anticorrosion in an alkaline solution. The electrochemical impedance spectroscopy (EIS) results suggest that proper amount of Ti and Zr doping improves the electrochemical catalytic activity significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号