首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The waving wing experiment is a fully three-dimensional simplification of the flapping wing motion observed in nature. The spanwise velocity gradient and wing starting and stopping acceleration that exist on an insect-like flapping wing are generated by rotational motion of a finite span wing. The flow development around a waving wing at Reynolds number between 10,000 and 60,000 has been studied using flow visualization and high-speed PIV to capture the unsteady velocity field. Lift and drag forces have been measured over a range of angles of attack, and the lift curve shape was similar in all cases. A transient high-lift peak approximately 1.5 times the quasi-steady value occurred in the first chord length of travel, caused by the formation of a strong attached leading edge vortex. This vortex appears to develop and shed more quickly at lower Reynolds numbers. The circulation of the leading edge vortex has been measured and agrees well with force data.  相似文献   

2.
Qualitative and quantitative flow visualizations were performed on a flapping rigid plate to establish a quantitative method for flow observation and evaluation of the force in the near field of a flapping wing. Flow visualization was performed qualitatively with dye visualization and quantitatively with velocity measurements using stereo particle image velocimetry (PIV) on three planes near the tip of the plate along its chord and oriented normally. By ensemble averaging the velocity fields of the same phase angles, they represent a portion of the volume near the tip. Measurements were conducted with two flapping frequencies to compare the flow structure. The second invariant of the deformation tensor visualized the leading edge and mid-chord vortices around the plate appearing due to flow separation behind the plate while other vortical structures were visualized by streamlines. These structures appear to be related to the dynamics of the leading edge vortex. Force analysis by integrating the phase-averaged velocity field within a chosen control volume showed increases in the maxima of the magnitudes of the non-dimensional unsteady force terms on the edge of the plate at the angles after the end of each stroke. The non-dimensional phase-averaged momentum flux was similar for both flapping frequencies.  相似文献   

3.
Particle image velocimetry (PIV) measurements are made to investigate the boundary layer developing over a modeled bottom trawl. The random motion of the fishing net structure as well as the flexibility and the porosity of this structure means that it is not enable to access the main characteristics of such a flow, using classical post-processing mathematical tools. An innovative post-treatment tool based on proper orthogonal decomposition (POD) is then developed to extract the mean velocity flow field from each available PIV instantaneous unsteady velocity field. In order to do so, the whole available velocity database is used to compute POD eigenfunctions and the first POD modes are identified as representing the mean flow field. It is then possible to deduce the mean boundary layer flow field for each position of the fishing net structure during PIV measurements. It is then observed that the mean flow field strongly depends on multiple parameters such as surface curvature, structure porosity, random motion of the structure. Streamwise evolution of classical thicknesses of boundary layer flow are also analyzed. The present work also provides benchmark PIV data of the unsteady flow developing on fishing net porous structures, which helps the progress in unsteady numerical codes for this investigation.  相似文献   

4.
We investigate the onset and development of vortical flow disturbances introduced into the wake of a horizontally fixed flat-plate by means of the controlled motion of a trailing edge flap. The vibrating mechanics of the flap allows for the introduction of both impulsive and harmonic weak amplitude velocity disturbances which are propagated downstream into the wake flow of the flat-plate. Quantitative experimental and numerical predictions of both steady and unsteady wake flow velocity resulting from different flapping frequencies are made at low Reynolds numbers (Re < 104). Frequency response tests of the wake confirmed the existence of two dominant frequencies where the wake flow organises with a particular arrangement of downstream moving vortex structures. Numerical predictions of steady (unforced) and forced wake velocity profiles and kinetic energy profiles are in good agreement with the experimental results. In order to understand practical implications of the dominant vortex structures in scalar transport, we have extended the numerical part of the study solving for the concentration equation of a passive scalar being injected in particular regions of the physical domain. A spatial correlation between the trajectory of vortex structures and the scalar concentration downstream the wake is observed. Moreover, the onset of tip vortex structures produced during the forcing cycle seems to be responsible of a local increase of scalar concentration near the span wise flap ends.  相似文献   

5.
An experimental investigation was conducted to characterize the evolution of the unsteady vortex structures in the wake of a pitching airfoil with the pitch-pivot-point moving from 0.16C to 0.52C (C is the chord length of the airfoil). The experimental study was conducted in a low-speed wind tunnel with a symmetric NACA0012 airfoil model in pitching motion under different pitching kinematics (i.e., reduced frequency k=3.8–13.2). A high-resolution particle image velocimetry (PIV) system was used to conduct detailed flow field measurements to quantify the characteristics of the wake flow and the resultant propulsion performance of the pitching airfoil. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged velocity distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about the behavior of the unsteady vortex structures. Both the vorticity–moment theorem and the integral momentum theorem were used to evaluate the effects of the pitch-pivot-point location on the propulsion performance of the pitching airfoil. It was found that the pitch-pivot-point would affect the evolution of the unsteady wake vortices and resultant propulsion performance of the pitching airfoil greatly. Moving the pitch-pivot-point of the pitching airfoil can be considered as adding a plunging motion to the original pitching motion. With the pitch-pivot-point moving forward (or backward), the added plunging motion would make the airfoil trailing edge moving in the same (or opposite) direction as of the original pitching motion, which resulted in the generated wake vortices and resultant thrust enhanced (or weakened) by the added plunging motion.  相似文献   

6.
To gain a better understanding of the fluid–structure interaction and especially when dealing with a flow around an arbitrarily moving body, it is essential to develop measurement tools enabling the instantaneous detection of moving deformable interface during the flow measurements. A particularly useful application is the determination of unsteady turbulent flow velocity field around a moving porous fishing net structure which is of great interest for selectivity and also for the numerical code validation which needs a realistic database. To do this, a representative piece of fishing net structure is used to investigate both the Turbulent Boundary Layer (TBL) developing over the horizontal porous moving fishing net structure and the turbulent flow passing through the moving porous structure. For such an investigation, Time Resolved PIV measurements are carried out and combined with a motion tracking technique allowing the measurement of the instantaneous motion of the deformable fishing net during PIV measurements. Once the two-dimensional motion of the porous structure is accessed, PIV velocity measurements are analyzed in connection with the detected motion. Finally, the TBL is characterized and the effect of the structure motion on the volumetric flow rate passing though the moving porous structure is clearly demonstrated.  相似文献   

7.
To comprehensively understand the effects of Kelvin–Helmholtz instabilities on a transitional separation bubble on the suction side of an airfoil regarding as to flapping of the bubble and its impact on the airfoil performance, the temporal and spatial structure of the vortices occurring at the downstream end of the separation bubble is investigated. Since the bubble variation leads to a change of the pressure distribution, the investigation of the instantaneous velocity field is essential to understand the details of the overall airfoil performance. This vortex formation in the reattachment region on the upper surface of an SD7003 airfoil is analyzed in detail at different angles of attack. At a Reynolds number Re c < 100,000 the laminar boundary layer separates at angles of attack >4°. Due to transition processes, turbulent reattachment of the separated shear layer occurs enclosing a locally confined recirculation region. To identify the location of the separation bubble and to describe the dynamics of the reattachment, a time-resolved PIV measurement in a single light-sheet is performed. To elucidate the spatial structure of the flow patterns in the reattachment region in time and space, a stereo scanning PIV set-up is applied. The flow field is recorded in at least ten successive light-sheet planes with two high-speed cameras enclosing a viewing angle of 65° to detect all three velocity components within a light-sheet leading to a time-resolved volumetric measurement due to a high scanning speed. The measurements evidence the development of quasi-periodic vortex structures. The temporal dynamics of the vortex roll-up, initialized by the Kelvin–Helmholtz (KH) instability, is shown as well as the spatial development of the vortex roll-up process. Based on these measurements a model for the evolving vortex structure consisting of the formation of c-shape vortices and their transformation into screwdriver vortices is introduced.  相似文献   

8.
A transitional separation bubble on the suction side of an SD7003 airfoil is considered. The transition process that forces the separated shear layer to reattach seems to be governed by Kelvin–Helmholtz instabilities. Large scale vortices are formed due to this mechanism at the downstream end of the bubble. These vortices possess a three-dimensional structure and detach from the recirculation region, while other vortices are formed within the bubble. This separation of the vortex is a highly unsteady process, which leads to a bubble flapping. The structure of these vortices and the flapping of the separation bubble due to these vortices are temporally and spatially analyzed at angles of attack from 4° to 8° and chord-length based Reynolds numbers Re c = 20,000–60,000 using time-resolved PIV measurements in a 2D and a 3D set-up, i.e., stereo-scanning PIV measurements are done in the latter case. These measurements complete former studies at a Reynolds number of Re c = 20,000. The results of the time-resolved PIV measurements in a single light-sheet show the influence of the angle of attack and the Reynolds number. The characteristic parameters of the separation bubble are analyzed focusing on the unsteadiness of the separation bubble, e.g., the varying size of the main recirculation region, which characterizes the bubble flapping, and the corresponding Strouhal number are investigated. Furthermore, the impact of the freestream turbulence is investigated by juxtaposing the current and former results. The stereo-scanning PIV measurements at Reynolds numbers up to 60,000 elucidate the three-dimensional character of the vortical structures, which evolve at the downstream end of the separation bubble. It is shown that the same typical structures are formed, e.g., the c-shape vortex and the screwdriver vortex at each Reynolds number and angle of attack investigated and the occurrence of these patterns in relation to Λ-structures is discussed. To evidence the impact of the freestream turbulence, these results are compared with findings of former measurements.  相似文献   

9.
To examine the effects of wing morphing on unsteady aerodynamics, deformable flapping plates are numerically studied in a low-Reynolds-number flow. Simulations are carried out using an in-house immersed-boundary-method-based direct numerical simulation (DNS) solver. In current work, chord-wise camber is modeled by a hinge connecting two rigid components. The leading portion is driven by a biological hovering motion along a horizontal stroke plane. The hinged trailing-edge flap (TEF) is controlled by a prescribed harmonic deflection motion. The effects of TEF deflection amplitude, deflection phase difference, hinge location, and Reynolds number on the aerodynamic performance and flow structures are investigated. The results show that the unsteady aerodynamic performance of deformable flapping plates is dominated by the TEF deflection phase difference, which directly affects the strength of the leading-edge vortex (LEV) and thus influences the entire vortex shedding process. The overall lift enhancement can reach up to 26% by tailoring the deflection amplitude and deflection phase difference. It is also found that the role of the dynamic TEF played in the flapping flight is consistent over a range of hinge locations and Reynolds numbers. Results from a low aspect-ratio (AR=2) deformable plate show the same trend as those of 2-D cases despite the effect of the three-dimensionality.  相似文献   

10.
An experimental study was conducted to characterize the evolution of the unsteady vortex structures in the wake of a root-fixed flapping wing with the wing size, stroke amplitude, and flapping frequency within the range of insect characteristics for the development of novel insect-sized nano-air-vehicles (NAVs). The experiments were conducted in a low-speed wing tunnel with a miniaturized piezoelectric wing (i.e., chord length, C = 12.7 mm) flapping at a frequency of 60 Hz (i.e., f = 60 Hz). The non-dimensional parameters of the flapping wing are chord Reynolds number of Re = 1,200, reduced frequency of k = 3.5, and non-dimensional flapping amplitude at wingtip h = A/C = 1.35. The corresponding Strouhal number (Str) is 0.33, which is well within the optimal range of 0.2 < Str < 0.4 used by flying insects and birds and swimming fishes for locomotion. A digital particle image velocimetry (PIV) system was used to achieve phased-locked and time-averaged flow field measurements to quantify the transient behavior of the wake vortices in relation to the positions of the flapping wing during the upstroke and down stroke flapping cycles. The characteristics of the wake vortex structures in the chordwise cross planes at different wingspan locations were compared quantitatively to elucidate underlying physics for a better understanding of the unsteady aerodynamics of flapping flight and to explore/optimize design paradigms for the development of novel insect-sized, flapping-wing-based NAVs.  相似文献   

11.
The three-dimensional flow that develops around a finite flapping wing is investigated using a tomographic scanning PIV technique. The acquisition and correlation processes employed to achieve such measurements have been carefully validated. Issues regarding the relevant timescales of the flow and the spanwise space-resolution are addressed. Results obtained on a hovering flapping wing whose plunging phase is described by a rectilinear motion highlight the influence of the free end condition and the formation of the tip vortex on the leading edge vortices behavior, wing/wake interactions, and wake stabilization.  相似文献   

12.
The unsteady flow field above a NACA 0012 airfoil pitching under deep dynamic stall conditions has been investigated in a low-speed wind tunnel by means of particle image velocimetry. The measurements of the instantaneous flow velocity field show the characteristic features of the dynamic stall process: formation and development of an organized vortex structure for increasing incidences and the subsequent separation. Vorticity and divergence estimated from the measured data give a good insight into the complex flow behaviour during the downstroke motion. Furthermore, small-scale structures could be observed in the separated flow field and even within the dynamic stall vortex.The authors would like to thank Dr. Schäfer (ISL) for his support in organizing the cooperative measurements, Mr. Seyb (DLR) for his help during the recording of PIV images, Dr. Bretthauer (DLR) and Mr. Vollmers (DLR) for his assistance during the phase of evaluation and post processing of the PIV recordings and Dr. Geißler (DLR) for helpful discussions on the dynamic stall problem.  相似文献   

13.
非对称槽道中涡旋波的特性研究   总被引:3,自引:0,他引:3  
利用PIV流场显示技术,对振荡流体在非对称槽道中涡旋波的产生、发展和消失的规律进 行了实验研究和分析,测得了涡旋波流场的速度矢量图,阐明了涡旋波流场周期性变化的特 点. 结合涡动力学方程,深入分析并揭示了做周期性运动的流体能在槽道中产生波的特性这 一规律,从中发现:流体周期变化的非定常性和不对称的槽道结构是形成涡旋波流动的主要 因素. 本文对涡旋波流场中各个旋涡的速度分布和涡量进行了测量和计算,分析了涡旋波 强化传质的机理,并研究了Re数对涡旋波流动的影响  相似文献   

14.
15.
The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3–15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.  相似文献   

16.
An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force-moment sensor unit, a high-resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the tip-speed-ratio of the wind turbine model on the dynamic wind loads and wake flow characteristics were quantified in the terms of the variations of the aerodynamic thrust and bending moment coefficients of the wind turbine model, the evolution of the helical tip vortices and the unsteady vortices shedding from the blade roots and turbine nacelle, the deceleration of the incoming airflows after passing the rotation disk of the turbine blades, the TKE and Reynolds stress distributions in the near wake of the wind turbine model. The detailed flow field measurements were correlated with the dynamic wind load measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and turbulent vortex flows in the wakes of wind turbines for the optimal design of the wind turbines operating in atmospheric boundary layer winds.  相似文献   

17.
昆虫拍翼方式的非定常流动物理再探讨   总被引:5,自引:0,他引:5  
基于提出的理论模化方法来探讨昆虫拍翼方式的非定常流动物理. 以悬停飞行为 例,通过对拍翼运动的分析,不仅解释了昆虫利用高频拍翼的方式为何能够克服低雷诺数带 来的气动局限性(St \gg 1/Re),而且还指出高升力产生和调节的3个流动 控制因素:(1) 由于拍翼的变速运动即时引起了流体动力响应,这种附加惯性效应 可产生瞬时的高升力; (2) 保持前缘涡不脱离翼面有助于减少升力的下降; (3) 增大后缘涡的强度并加速其脱离后缘能够有效地提高升力.  相似文献   

18.
This paper addresses by means of high-resolution numerical simulations and experimental quantitative imaging the three-dimensional unsteady separation process induced by large-amplitude heaving oscillations of a low-aspect-ratio wing under low-Reynolds-number conditions. Computed results are found to be in good agreement with experimental flow visualizations and PIV measurements on selected cross-flow planes. The complex unsteady three-dimensional flow structure generated during dynamic stall of the low-aspect-ratio wing is elucidated. The process is characterized by the generation of a leading-edge vortex system which is pinned at the front corners of the plate and which exhibits intense transverse flow toward the wing centerline during its initial stages of development. This vortex detaches from the corners and evolves into an newly found arch-type structure. The legs of the arch vortex move along the surface toward the wing centerline and reconnect forming a ring-like structure which is shed as the next plunging cycle begins. Vortex breakdown, total collapse and reformation of the wing tip vortices are also observed at various stages of the heaving motion. At the relatively high value of reduced frequency considered, these basic flow elements of the complex three-dimensional dynamic stall process are found to persist over a range of Reynolds numbers.  相似文献   

19.
This paper presents the basis of a numerical method for unsteady aerodynamic computation around thin lifting and/or propulsive systems with arbitrary variable geometries, involving the velocity field, the velocity potential, the pressure field and the wake characteristics (geometry and vortex strength). Most of the corresponding theory actually stems from the unsteady wake model established by Mudry, in which the wake is considered to be a median layer, characterized by a pair of functions on which Mudry founded the concept of continuous vortex particle. The governing relations of the continuous problem are then the flow tangency condition, the wake integro‐differential evolution equation, and a flow regularity condition at the trailing edge. This constitutes a rigorous and complete theoretical formulation of this problem, from which a discretization scheme and a numerical method of solution are derived. The view of the vortex wake is similar to the one in the classical vortex lattice approaches, but uses a discrete vortex particle concept, particularly well suited for the prediction of the unsteady wake deformation. This, together with the continuous theory, ensures the computing method compares favorably with the classical methods in terms of flexibility and computing costs. In order to demonstrate the capabilities of the present method, the calculation of flapping wings of variable geometry is also presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
This study deals with the numerical predictions through Large-Eddy Simulation (LES) of the separated–reattached turbulent flow over a blunt flat plate for analyzing main coherent structure features and their relation to the unsteady pressure field. A compressible approach that inherently includes acoustic propagation is here followed to describe the relationship between pressure fluctuations and vortex dynamics around the separation bubble. The objective of the present work is then to contribute to a better understanding of the coupling between the vortex dynamics and the wall pressure fluctuations. The filtered compressible Navier–Stokes equations are then solved with a numerical method that follows a Lax–Wendroff approach to recover a high accuracy in both time and space. For validations, the present numerical results are compared to experimental measurements, coming from both the Pprime laboratory (Sicot el al., 2012) and the literature (Cherry et al., 1984; Kiya and Sasaki, 1985; Tafti and Vanka,1991; Sicot et al., 2012). Our numerical results very well predict mean and fluctuating pressure and velocity fields. Flapping, shedding as well as Kelvin–Helmholtz characteristic frequencies educed by present simulations are in very good agreement with the experimental values generally admitted. These characteristic modes are also visible on unsteady pressure signatures even far away from the separation. Spectral, POD and EPOD (extended POD) analyses are then applied to these numerical data to enhance the salient features of the pressure and velocity fields, especially the unsteady wall pressure in connection with either the vortex shedding or the low frequency shear-layer flapping. A contribution to the understanding of the coupling between wall pressure fluctuations and eddy vortices is finally proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号